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This document contains solutions for the exercises in Machine learning with
neural networks. An Introduction for scientists and engineers (Cambridge Univer-
sity Press, 2021). Students, teaching assistants, and colleagues have helped over
the years to compile the solutions presented here. I am particularly grateful to
Juan Diego Arango, Oleksandr Balabanov, Anshmuan Dubey, Ehsan Ghane, Phillip
Gräfensteiner, Johan Gustafsson, Hampus Linander, Vitalii Iarko, Robert Mehlig, Jan
Meibohm, Navid Mousavi, Marina Rafajlovic, Jan Schiffeler, Ludvig Storm, Linus
Sundberg, Arvid Wenzel Wartenberg, and Erik Werner for their contributions. I
would also like to thank John Segerstedt who took the initiative to collect solutions
to exam questions (a very good exam preparation!), as well as Abraham Deniz for
typesetting an early version of this compilation.

The cover image shows an input pattern designed to maximise the output of
neurons corresponding to one feature map in a given convolution layer of a deep
convolutional neural network. I thank Hampus Linander for making this image.

In the text that follows, references to equations, figures, tables, and citations in
Machine learning with neural networks are typeset in red. A list of errata for this
book is available at gu-statphys.org/media/mydocs/errata.pdf. Please let me know
if you find further errors or inaccuracies in the book, or in the present document.

Gothenburg, September 22 (2023) Bernhard Mehlig

http://gu-statphys.org/media/mydocs/errata.pdf


2 REPETITION: LINEAR ALGEBRA

1 Repetition: linear algebra

1.1 Vectors and components

A basis e1, . . . eN of an N -dimensional vector space allows to express any vector x as
a linear combination of the basis vectors e j ,

x=
∑

j

x j e j . (1.1)

For e1, . . . eN to be a basis, the basis vectors must be linearly independent. The x j

are called the components of the vector x. They can be grouped into the column
vector

x =





x1
...

xN



 . (1.2)

An example of a basis is the Cartesian basis in Rn ,

e 1 =









1
0
...
0









, e 2 =









0
1
...
0









, . . . , e N =









0
0
...
1









. (1.3)

An orthonormal basis satisfies

ei ·e j =δi j =

�

1 i = j
0 i 6= j

(1.4)

Hereδi j is called the Kronecker delta, and ei ·e j is the scalar product (or dot product)
between ei and e j . The scalar product between two vectors a and b can be defined
in terms of the column vectors of their components,

a ·b= aTb =
�

a1, a2, . . . , aN

�









b1

b2
...

bN









= a1b1+a2b2+ . . .+aN bN . (1.5)

Note that a ·a= a 2
1 +a 2

2 + . . .+a 2
N = |a|

2 equals the square of the length of the vector
a. The scalar product is symmetric, a ·b= b ·a, since aTb =b Ta . Two vectors a and
b are said to be orthogonal if a ·b = 0. As a consequence, the basis vectors of an
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orthonormal basis are orthogonal to each other, and of unit length. From Eq. (1.1)
we see that we obtain the component x j of a vector x with respect to an orthonormal
basis e1, . . . eN by computing e j ·x. The Cartesian basis (1.3) is orthonormal.

In RN , the scalar product a ·b can be expressed in terms of the angle ϕ between
a and b ,

a ·b= |a||b|cosϕ . (1.6)

So the angle between two orthogonal vectors is a right angle, it equals ±π/2 mod-
ulo 2π.

1.2 Basis change

Since the components of the vector x are defined with respect to a basis, they change
if one changes the basis (the vector x remains the same). Suppose we change the
basis from e1, . . . eN to a new basis e′1, . . . e′N using

e′j =
∑

i

ei Ti j . (1.7)

Expressed in the basis e1, . . . , eN , the i -th component of the new basis vector e′j is
Ti j . Since the vector x remains the same, Eq. (1.1) implies

∑

xi ei =
∑

j

x ′j e′j . (1.8)

Inserting (1.7) into (1.8) gives

∑

j

x ′j e′j =
∑

j

x ′j

∑

i

ei Ti j =
∑

i

�∑

j

Ti j x ′j
�

ei . (1.9)

It follows that the components change in the following way:

xi =
∑

j

Ti j x ′j or x =Tx ′ with T=









T11 T12 . . . T1N

T21 T22 . . . T2N
...

TN 1 TN 2 . . . TN N









. (1.10)

Since the basis vectors e′j must be linearly independent, the matrix T must be
invertible, so that we can write

x ′ =T−1x . (1.11)
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As an example consider rotating the Cartesian basis in R2 counter-clockwise by the
angle α:

�

1
0

�

→
�

cosα
sinα

�

and

�

0
1

�

→
�

−sinα
cosα

�

. (1.12)

Comparing with Eq. (1.7), we see that the required rotation matrix is

R=
�

cosα −sinα
sinα cosα

�

. (1.13)

Rotations are examples of orthogonal transformations that satisfy

RTR= 1 , (1.14)

where 1 is the identity matrix. One can verify by explicit computation that Eq. (1.13)
satisfies condition (1.14). This condition implies that a rotation does not change
the length of a vector, the length of Ra equals that of a . Since a rotation preserves
lengths and relative angles, we obtain an orthonormal basis if we rotate a given or-
thonormal basis. The determinant of orthogonal transformations is of unit modulus.
This follows from Eq. (1.14) using the rules for calculating with determinants:

1= det1= detRTR= detRT detR= (detR)2 . (1.15)

The determinant of rotations equals unity. For example

det

�

cosα −sinα
sinα cosα

�

= cos2α+ sin2α= 1 . (1.16)

The determinant of reflections (another sort of orthogonal transformations) equals−1.
In components, a linear map from x to y can be expressed as

y =Ax , (1.17)

whereA is the transformation matrix associated with the map. The matrix changes
if we change the basis, y ′ =A′x ′. To find A′, we start from Eq. (1.10):

x =Tx ′ and y =Ty ′ . (1.18)

Inserting this relation into (1.17) gives

Ty ′ =ATx ′ and thus y ′ =T−1ATx ′ . (1.19)

We conclude that
A′ =T−1AT . (1.20)

For a rotation between two orthonormal bases, one can write this relation also as

A′ =RTAR . (1.21)
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1.3 Eigenvalues and eigenvectors

An eigenvector u of a matrix A obeys

Au =λu , (1.22)

and λ is called the eigenvalue. The eigenvector is defined only up to a multiplicative
constant. To fix it, one usually requires that the eigenvectors are of unit length. To
find eigenvectors and eigenvalues of a matrix, one rewrites (1.22) as

(A−λ1)u = 0 . (1.23)

This equation has non-zero solutions u only if

det(A−λ1) = 0 . (1.24)

This is the characteristic equation of A. As an example consider the matrix

A=
�

1 2
2 1

�

. (1.25)

To find the eigenvalues λ, Eq. (1.24) says that we need to solve

det

�

1−λ 2
2 1−λ

�

= (1−λ)2−4= 0 . (1.26)

The polynomial on the r.h.s. of this equation is called the characteristic polynomial.
It has two roots, so there are two eigenvalues, namely λ1 =−1 and λ2 = 3. To find
the corresponding eigenvectors, one must solve (1.23) after inserting λ= λ1, and
then λ=λ2. This gives

λ1 =−1 , u 1 =
1p
2

�

1
−1

�

, and λ2 = 3 , u 2 =
1p
2

�

1
1

�

. (1.27)

We see that the eigenvectors are orthogonal, and they were normalised to form an
orthonormal basis, uT

i u j =δi j . The spectral theorem1 says that symmetric matrices
(with real-valued components) admit an orthonormal basis of eigenvectors. More
generally, one can show that normal matrices (AAT =ATA) have an orthonormal
basis of eigenvectors. The symmetric matrices form a subset of all normal matrices.
An orthogonal matrix is normal, but not symmetric.

1W. H. Greub, Linear Algebra 4th edition, Springer, New York 1975.
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In general however, the set of eigenvectors may not form an orthonormal basis.
For example, the eigenvectors of the matrix

A=
�

1 1
0 2

�

(1.28)

are not orthogonal:

λ1 = 1 , u 1 =

�

1
0

�

, and λ2 = 2 , u 2 =
1p
2

�

1
1

�

. (1.29)

A second example is

A=
�

1 1
0 1

�

. (1.30)

This matrix has only one eigenvalue and one eigenvector,

λ1 = 1 , u 1 =

�

1
0

�

, (1.31)

too few to form a basis.
The eigenvalues of a real-valued matrix can have imaginary parts. As an example,

consider the counter-clockwise rotation matrix by the angle π/4

R= 1p
2

�

1 −1
1 1

�

. (1.32)

It has the following eigenvalues and eigenvectors

λ1 =
1p
2
(1+ i ) , u 1 =

1p
2

�

i
1

�

, and λ2 =
1p
2
(1− i ) , u 2 =

1p
2

�

−i
1

�

. (1.33)

Note that the norm of a vector with complex-valued components is defined as |u |2 =
u1u1+u 2u2+ . . .+u N uN , where the overbar denotes complex conjugation, i =−i .

Symmetric matrices have real eigenvalues. This follows from (1.22):

λ2
α =uT

αAAu α = (Au α)
TAu α ≥ 0 . (1.34)

Taking the square root, we see that λα is real-valued.
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1.4 Matrix diagonalisation

Assume that A has an orthonormal basis of eigenvectors u α. This basis is related
to the Cartesian basis by a rotation R [Eq. (1.7)]. Suppose you change from the
Cartesian basis to the eigenvectors. The transformed matrix

A′ =RTAR (1.35)

is diagonal. This follows because the i -th column of R is the image of e i , that is u i .
If A has an orthonormal basis of eigenvectors u α, we can express it as

A=
∑

α

λαu αuT
α . (1.36)

This can be verified by applying the l.h.s. and the r.h.s. of this relation to u β . We see
that the result is the same. Since u β is a basis, the above equality must hold.

1.5 Linear differential equations with constant coefficients

The linear differential equation (the dot denotes the time derivative, ẋ = d
dt x )

ẋ = Ax (1.37)

has the solution
x (t ) = ea t x0 (1.38)

with initial condition x (0) = x0. In the same way, one can write the solution of the
N -dimensional differential equation

ẋ =Ax as x (t ) = eAt x 0 . (1.39)

The exponential is defined by expanding: eAt = 1+At + t 2

2 A2 + . . .. If A has an
orthonormal basis of eigenvectors, one can write

eAt =
∑

α

eλαt u αuT
α . (1.40)

Inserting this into the right part of Eq. (1.39), one finds that the solution x (t ) is a
linear combination of the eigenvectors of A

x (t ) =
∑

α

eλαt u αcα with cα =uT
αx 0 . (1.41)

In other words, the eigenvalues determine the fate of the solution. Its norm diverges
exponentially unless all eigenvalues have negative real parts.
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1.6 Linear stability analysis

Consider the non-linear dynamical system

ẋ = f (x ) . (1.42)

When f is a non-linear function, Eq. (1.42) may be hard to solve. To obtain a
qualitative understanding of the dynamics, one considers the steady states x ∗ of
the differential equation (1.42),

ẋ ∗ = 0 or equivalently f (x ∗) = 0 . (1.43)

If one starts at x (0) = x ∗, the solution remains there forever (steady state). If one
starts in the vicinity of x ∗, the solution tends to either converge to x ∗ or to diverge
from this state. To determine what happens, one starts very close to the fixed point:

x (0) = x ∗+δx (0) with |δx (0)| � |x ∗| . (1.44)

Upon inserting the ansatz x (t ) = x ∗+δx (t ) into (1.42), one finds by Taylor expansion
and using (1.43):

d
dt δx =Aδx . (1.45)

HereA is the matrix with elements Ai j = ∂ fi/∂ x j evaluated at x ∗. One concludes:
the steady state x ∗ is linearly stable only if all eigenvalues of A have negative real
parts.

1.7 Transient growth in stable systems

Consider two linearised systems d
dt δx =Aδx with

A1 =

�

−1 1
0 −2

�

, and A2 =

�

−1 8
0 −2

�

. (1.46)

How doesδx (t ) = eAt x 0 behave? Assume that |δx 0|= 1, and average over all possible
orientations of δx 0. Fig. 1.1 shows how the norm 〈|δx (t )|2〉 behaves as a function of
time. Here 〈· · · 〉 stands for the average over initial orientations of δx 0. Although the
two matrices have the same eigenvalues (λ1 = −2 and λ2 = −1), the perturbation
δx (t ) behaves very differently (Fig. 1.1).

Linear stability analysis (Section 1.6) predicts that 〈|δx (t )|2〉 ∼ e2λ1t as t →∞.
The right panel in Fig. 1.1 shows that this is indeed the case, for large times.
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Figure 1.1: Time dependence of the magnitude of the perturbation δx (t ) for the
matrices in Eq. (1.46).

For a symmetric matrix, the perturbation 〈|δx (t )|2〉must decay monotonically if
all eigenvalues are negative, since

〈|δx (t )|2〉=
∑

α

e−2λαt 〈|cα|2〉 . (1.47)

Transient growth at intermediate times can arise if the matrixA is asymmetric. This
is the case for A2, as Fig. 1.1 shows, but the matrix A1 is asymmetric too, but the
corresponding differential equation does not exhibit transient growth. In conclusion,
the system (1.45) may exhibit transient growth ifA is asymmetric. Whether it does or
not depends on the eigenvectors of A. Transient growth occurs when eigenvectors
of A become co-linear.2

2Trefethen, Trefethen, Reddy & Driscoll, A new direction in hydrodynamic stability: beyond eigen-
values; Mehlig & Chalker, Phys. Rev. Lett. 81 (1998) 3367.
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2 Solutions for exercises in Chapter 2

Answer ( 2.1) — For only one pattern, the modified Hebb’s rule (2.26) reads: wi j =
1
N (xi x j −δi j ). Feed pattern x to the network, s (0) = x . Now evaluate

N
∑

j=1

wi j x j =
N
∑

j=1

1
N (xi x j −δi j )x j = (1− 1

N )xi , (2.1)

using that x j = ±1, and therefore
∑N

j=1 x 2
j = N . Then apply the signum function.

This gives sgn[(1− 1
N )xi ] = xi for N > 1. It follows that under this condition, the

network dynamics reproduces x . So Equation (2.8) is satisfied.

Answer ( 2.2) — Using Equation (2.13), the weight matrix for Hebb’s rule (2.25) can
be written asW= 1

N

∑

µ x (µ)x (µ)T. If the patterns are orthogonal (Qµν =N −1x (µ)Tx (ν) =
δµν), thenWx (ν) = x (ν), so that the cross-talk term vanishes, x (ν) is recognised. For the
modified Hebb’s rule (2.26), the weight matrix takes the formW= 1

N

∑

µ(x
(µ)x (µ)T−I),

where I is the unit matrix with elements δi j . For this weight matrix, we find that
Wx (ν) = (1− 1

N )x
(ν) for orthogonal patterns. This implies that the cross-talk term

vanishes for N > 1.

Answer ( 2.3) — When we use Hebb’s rule (2.25), the local field is obtained as b (ν)i =
x (ν)i +

1
N

∑N
j=1

∑

µ 6=ν x (µ)i x (µ)j x (ν)j , instead of Equation (2.28). This implies a slightly
different definition of the cross-talk term. Equation (2.33) is replaced by:

C (ν)i =−x (ν)i

1

N

N
∑

j=1

∑

µ 6=ν

x (µ)i x (µ)j x (ν)j . (2.2)

Now average over the independent patterns, using that 〈x (ν)i x (µ)i x (µ)j x (ν)j 〉= 0 when

i 6= j andµ 6= ν, because the average factorises in this case, and 〈x (µ)k 〉= 0. When i = j ,

there are p − 1 terms that average to 〈[x (ν)j ]
2[x (µ)j ]

2〉 = 1. We conclude that 〈C (ν)i 〉 =
−(p −1)/N ≈−p/N for large p . This means that the distribution of C is a shifted
Gaussian, P (C ) = (2πσ2

C )
−1/2 exp[−(C −〈C 〉)2/(2σ2

C )], instead of Equation (2.36). For
small α = p/N , the mean tends to zero, so that the new distribution approaches
Equation (2.36). For large values ofα, by contrast, the mean 〈C 〉 cannot be neglected.
In the limitα→∞, the mean of the weight matrix, 〈W〉= p

N I, dominates the network
dynamics. The one-step error probability tends to zero in this limit because all states
are reproduced, but the network cannot learn anything meaningful.
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Figure 2.1: Numerical results for the one-step error probability (Î) for the update
rule (2.5), for mixed states of the form (2.52) with +++. For comparison, the one-
step error probability (2.53) for a stored pattern is also shown (solid line). Schematic,
after simulations by Robert Mehlig. Exercise 2.5.

Answer ( 2.4) — Consider sgn(±x (1)i ±x (2)i ). For x (ν)i =±1, the argument of the signum
function may evaluate to zero, but sgn(0) is not defined. Therefore such states
cannot be recognised. The same is true for superpositions of any even number of
stored patterns. As a consequence one considers only odd superpositions. See also
Exercises 2.5 and 3.1.
To show that there are 22n+1

�

p
2n+1

�

mixed states that are superpositions of 2n +1 out

of p patterns, note that there are
�

p
2n+1

�

ways of choosing 2n +1 out of p patterns,
and there are 2(2n+1) ways of distributing the signs in Equation (2.52).

Answer ( 2.5) — Figure 2.1 shows numerical results for the one-step error probabil-
ity for the mixed state (2.52) with +++. We see that the error probability is much
larger for this state than the one-step error probability (2.39) for a stored pattern.
But just like Equation (2.39), the error probability tends to zero as α→ 0. To explain
this observation, we show that the condition

sgn
�

1

N

p
∑

µ=1

N
∑

j=1

x (µ)i x (µ)j x (mix)
j

�

= x (mix)
i (2.3)

is satisfied in the limit. Following Ref. [1], we split the sum in the usual fashion

1

N

p
∑

µ=1

N
∑

j=1

x (µ)i x (µ)j x (mix)
j =

3
∑

µ=1

x (µ)i

1

N

N
∑

j=1

x (µ)j x (mix)
j + cross-talk term . (2.4)

For small values of α, we can ignore the cross-talk term (Section 2.4). The goal is to
determine whether the first term on the r.h.s. reproduces x (mix)

i . For large N , the sum

over j on the r.h.s. of Equation (2.4) is an average over the quantityσµ = x (µ)j x (mix)
j .
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Table 2.1: Signs ofσµ = x (µ)j x (mix)
j . Exercise 2.5.

x (1)j x (2)j x (3)j x (mix)
j σ1 σ2 σ3

1 1 1 1 1 1 1
1 1 -1 1 1 1 -1
1 -1 1 1 1 -1 1
1 -1 -1 -1 -1 1 1

-1 1 1 1 -1 1 1
-1 1 -1 -1 1 -1 1
-1 -1 1 -1 1 1 -1
-1 -1 -1 -1 1 1 1

Table 2.1 lists all possible combinations of bits of pattern j and the corresponding
values ofσµ. Using that Prob(x (ν)i =±1) = 1

2 [Equation (2.29)], we see that 〈σµ〉= 1
2 .

This implies

1

N

p
∑

µ=1

N
∑

j=1

x (µ)i x (µ)j x (mix)
j =

1

2

3
∑

µ=1

x (µ)i . (2.5)

Taking the signum-function, we conclude that x (mix) is reproduced. This demon-
strates that the one-step error probability for the mixed state tends to zero as α→ 0
(Figure 2.1), for deterministic updates. Exercise 3.1 concerns the effect of noise on
the stability of mixed states.

Answer ( 2.6) — We have that s ′2 = sgn(w21s1) =−sgn(s1) =−s1 because w21 =−1. It
follows that H ′ −H = − 1

2 (w21 +w12)(s1s ′2 − s1s2) =
1
2 (w21 +w12)s1(s1 + s2). Inserting

w21 =−1 and w12 = 2 gives H ′−H = 1
2 s1(s1+ s2)> 0 if s1 and s2 have the same sign.

This shows that H can increase under the asynchronous network dynamics if the
weights are not symmetric.

Answer ( 2.7) — Assume that the second-order weights w (2)
i j are symmetric, and that

the diagonal weights w (2)
i i are zero. Further, assume that the third-order weights

w (3)
i j k are symmetric,

w (3)
i j k =w (3)

j i k =w (3)
i k j =w (3)

k j i , (2.6a)

and that they vanish when at least two indices are the same:

w (3)
i i k =w (3)

i j i =w (3)
i j j = 0 . (2.6b)
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Now evaluate the derivative −∂H /∂ sm to obtain the asynchronous update rule.
One finds

s ′m = sgn(bm ) with bm =
∑

j

w (2)
m j s j +

1

2

∑

j k

w (3)
m j k s j sk . (2.7)

A calculation analogous to the one summarised in Section 2.5 shows that H cannot
increase under this update rule.

Answer ( 2.8) — Since s =±1 is mapped to n = 0, 1 by s = 2n −1, try

wi j =
1
N (2ni −1)(2n j −1) , wi i = 0 . (2.8a)

For the thresholds, take
µi =

1
2

∑

j

wi j . (2.8b)

These values of the thresholds ensure that the local fields in the s - and n-represen-
tation are the same, up to a factor of two [assuming θi = 0 in Equation (1.5)].
The first task is to show that this rule works for one stored pattern. The calculation
is analogous to Equations (2.10) and (2.11):

∑

j

wi j n j −µi =
∑

j

wi j (n j − 1
2 ) =

1

2

∑

j

wi j (2n j −1) (2.9)

=
1

2N

∑

j 6=i

(2ni −1)(2n j −1)2 = (2ni −1)
1

N

∑

j 6=i

(2n j −1)2 . (2.10)

Since the right factor on the r.h.s. of Eq. (2.10) is positive, one finds:

n ′i = θH(2ni −1) . (2.11)

Since θH(2ni −1) = ni , we conclude that ni remains unchanged. So the pattern is
recognised.
The answer to the second part of the question is obtained by a calculation analogous
to the argument leading from Equation (2.45) to (2.49). Update neuron m and
assume that its state changes, n ′m 6= nm . Assuming that the diagonal weights are set
to zero, the resulting change in the energy function is

H ′−H =− 1
2

∑

j 6=m

(wm j +w j m )(n
′
m n j −nm n j ) +µm (n

′
m −nm ) . (2.12)

Since the weights are symmetric, the first term can be evaluated further,

H ′−H =−(n ′m −nm )
�∑

j 6=m

wm j n j −µm

�

. (2.13)
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Now evaluate sgn(H ′ −H ). If nm = 1 then n ′m = 0. As a consequence, the factor
�

∑

j 6=m wm j n j −µm

�

is negative, so that H ′−H < 0. If nm = 0, then n ′m = 1. In this

case the factor
�

∑

j 6=m wm j n j −µm

�

is positive, so that again H ′−H < 0.

Answer ( 2.9) — Consider the effect of one update with the synchronous rule (1.2).
Divide the neurons into two sets: for all neurons in S , s ′i = si , but for those in
the complementS c the state changes, s ′i =−si . The corresponding change in the
energy function (2.44) reads

H ′−H = 2
∑

i∈S
j∈S c

wi j si s j . (2.14)

Here it is assumed that the weights are symmetric, and that the diagonal weights
vanish. Equation (2.14) simplifies to Equation (2.48) when S c contains only one
neuron, number m . Now consider the case N > 2 and assume that all neurons except
the first one change state,1 that isS = {1} andS c = {2, . . . , N }. The corresponding
change in H is

H ′−H = 2
N
∑

j=2

w1 j s1s j = 2
N
∑

j=1

w1 j s1s j = 2s1b1 . (2.15)

In the second equality we used that w11 = 0. Since the state of the first neuron
was assumed not to change, sgn(b1) = s1. This means that s1b1 > 0. We conclude
that the energy function can increase under synchronous updates. Contrast this
conclusion to how H changes under asynchronous McCulloc-Pitts updates. In this
case H ′−H ≤ 0, as explained in Section 2.5.

Answer ( 2.10) — We want to show that d
dt E ≤ 0. Differentiating E w.r.t time t yields

dE

dt
=−

∑

i j

wi j

dbi

dt
g ′(bi )g (b j ) +

∑

i

θi

dbi

dt
g ′(bi ) +

∑

i

dbi

dt
bi g ′(bi ) (2.16)

=
∑

i

dbi

dt
g ′(bi )

�

−
∑

j

wi j g (b j ) +θi + bi

�

, (2.17)

where we used wi j =w j i in the first step. The equation of motion of bi reads

τ
dbi

dt
=τ

∑

j

wi j

dni

dt
=−bi −θi +

∑

j

wi j g (b j ) . (2.18)

1Note that this assumption fails for N = 2, where it corresponds toS = {1},S c = {2}. For N = 2,
the update rules are s ′1 = sgn(w12s2) and s ′2 = sgn(w21s1). Since the weights are symmetric, either both
neurons are updated, or none. As consequence we must require that N > 2.
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Combining Equations (2.16) and (2.18) yields

dE

dt
=−

1

τ

∑

i

g ′(bi )
�

bi +θi −
∑

j

wi j g (b j )
�2

. (2.19)

This expression cannot be positive because g ′(b ) > 0, and this means that local
minima of E are attractors.
The steady states n ∗ of the dynamics satisfy n ∗i = g (b ∗i ), b ∗i =

∑

j wi j n ∗i − θi , and
dE ∗/dt = 0. But note that they need not be attractors. Consider an example: w11 =
w22 = 0, w12 = w21 = 10, and θ1 = θ2 = −5. The steady state n ∗ = [12 , 1

2 ]
T is a saddle

point. See Exercise 9.2 and Equation (9.18a).

Answer ( 2.11) — The stored pattern shown in Figure 2.11 is represented by x (1) =
[1,−1,−1,−1]T. The corresponding weight matrix (2.13) reads

W=
1

4







1 −1 −1 −1
−1 1 1 1
−1 1 1 1
−1 1 1 1






. (2.20)

Now evaluate s (t = 1). First, applyW to s (0), where s (0) contains the bits of one of
the 16 possible patterns. Second, take the sgn-function. The result is that the stored
pattern x (1) is obtained for the five patterns that differ by at most one bit from x (1).
For the six patterns that differ by two bits, the network fails because the argument
of the signum function is zero. Finally there are five patterns that differ by three or
four bits from x (1). In these cases, one obtains the inverted pattern −x (1).

Answer ( 2.12) — Define

Qµν =
1

N

N
∑

j=1

x (µ)j x (ν)j , (2.21)

as in Equation (3.50). Bit j contributes with +1 to Qµν if x (µ)j = x (ν)j , and with −1 if

x (µ)j 6= x (ν)j . Since there are N = 32 bits, we have Qµν = (32−2dµν)/32, where dµν is
Hamming distance, the number of bits by which the patterns x (µ) and x (ν) differ
[Equation (2.2)]. Table 2.2 lists the values of Qµν extracted from Figure 2.12. Hebb’s
rule implies that

b (ν)i =
∑

j

wi j x (ν) = x (1)i Q1ν+ x (2)i Q2ν . (2.22)
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Table 2.2: Distances and overlaps between the patterns shown in Figure 2.12. Exer-
cise 2.12.

µ ν dµν Qµν

1 1 0 1
1 2 13 6

32

1 3 2 28
32

1 4 32 −1
1 5 16 0
2 2 0 1
2 3 15 2

32

2 4 19 − 6
32

2 5 19 − 6
32

Applying the signum function, one finds

sgn(b (1)i ) = x (1)i , sgn(b (2)i ) = x (2)i , sgn(b (3)i ) = x (1)i ,

sgn(b (4)i ) =−x (1)i = x (4)i , sgn(b (5)i ) =−x (2)i .

We conclude that patterns x (1), x (2) and x (4) remain unchanged.

Answer ( 2.13) — Hebb’s rule wi j =
1
N

∑

µ x (µ)i x (µ)j gives for the weight matrix

W=
4

3





1 0 0
0 1 0
0 0 1



 . (2.23)

Since the weight matrix is proportional to the unit matrix, all patterns are repro-
duced, not only the stored ones. Therefore the network cannot single out the XOR
patterns. The network fails in this way because Hebb’s rule is based on two-point
correlations of the stored patterns, but three-point correlations are needed to learn
the XOR patterns (Chapter 4).

Answer ( 2.14) — Both si and x (1)i can assume only the values ±1. It follows that
d = 1

2 −
1

2N

∑

i si x (1)i . Therefore

H =−2N ( 12 −d )2 . (2.24)

It was shown in Section 2.5 that H cannot increase under the asynchronous Mc-
Culloch-Pitts dynamics (2.5). For d this is not the case, because it is not invariant
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under s →−s . The energy function decreases to a local minimum as s →−x (1), but
the distance d increases to unity. In other words, the distance does not account for
the fact that the inverted pattern −x (1) is closely related to x (1).
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3 Solutions for exercises in Chapter 3

Answer ( 3.1) — We start from the mean-field equation (3.21) for the mixed order
parameter (3.19). Assume that only the first n components (µ= 1, . . . , n) are non-
zero, and that they are all equal to m > 0. Defining z (n )i =

∑n
µ=1 x (µ)i , Equation (3.21)

can be written as
m = 1

n 〈z
(n )
i tanh(βm z (n )i )〉 . (3.1)

Here 〈· · · 〉 is an average over random bits x (µ)i = ±1 with equal probability, for µ =
1, . . . , n . For n = 1, this mean-field equation is equivalent to Equation (3.14).
Figure 3.1(a) shows the solution of (3.1) for n = 1 and n = 3 as a function of the
noise level β−1. The curve for n = 1 is the same as that in Figure 3.3. The order
parameter for n = 3 is non-zero below a critical noise level given by βc = 1, and it
is smaller than the n=1-order parameter in this range. The n=3-order parameter
m approaches 1

2 as the noise level tends to zero. This follows from the solution to
Exercise 2.5: Equation (3.1) implies that m approaches 1

3

∑3
µ=1〈σµ〉=

1
2 . In this limit,

Equation (3.20) shows that 〈si 〉 tends to the mixed state (2.52), with all plus signs,

〈si 〉→ sgn(x (1)i + . . .+ x (n )i ) . (3.2)

Now consider the network dynamics. For a given noise level, we iterate the McCulloch-
Pitts dynamics starting at si (t = 0) = sgn(x (1)i + x (2)i + x (3)i ), and evaluate the com-
ponents of the order parameter (3.19). The results are shown in Figure 3.1(b)-(d),
for different values of the noise level β−1. The order-parameter components are
plotted versus the iteration number, as in Figure 3.2. Also shown is the solution of
Equation (3.1).
For small noise levels, the simulations appear to converge to steady-state values that
agree well with the mean-field theory. In particular, the non-zero components take
the same value, determined by Equation (3.1) [panel (b)]. Simulations at smaller
values of N show, however, that the mixed states are metastable, even at small noise
levels. As the iteration number tends to∞, the network dynamics explores a single
pattern. Also this state is metastable, as noted on pages 39 and 40.
For larger noise levels [Figure 3.1(c) and (d)], the non-zero order-parameter compo-
nents immediately drift away from the mean-field prediction. This happens because
the n=3-mean-field solution bifurcates at β−1 = 4.6, it becomes unstable [1,33]. As
outlined in these references, this conclusion follows from the properties of the free
energy of the Hopfield model,

F (β ) =−
1

β
〈log Z 〉 with Z =

∑

s
e−βH (s ) . (3.3)
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Figure 3.1: (a) Numerical solution of the mean-field equation (3.1) as a function of
the noise level β−1 for n = 1 and 3. (b) Numerical result for order parameters (3.19),
for n = 3, p = 5, N = 4000, and β−1 = 0.34. The results are obtained by iterating the
McCulloch-Pitts dynamics (1.9) with initial condition si (t = 0) = sgn(x (1)i + x (2)i + x (3)i ).
Also shown is the solution of (3.1), dashed line. (c) Same, but for β = 0.604. Mean-
field theory not shown. (d) Same, but for β = 1. Schematic, after simulations by
Linus Sundberg. Exercise 3.1.
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The average is over different realisations of random patterns. It can be shown that
the the steady-state distribution corresponds to a local minimum of the free energy.1

In mean-field theory, one approximates the energy function H (s ) =− 1
2

∑

i 6= j wi j si s j

using
si s j ≈ si 〈s j 〉+ 〈si 〉s j −〈si 〉〈s j 〉 . (3.4)

In other words, one neglects terms quadratic in the fluctuations si −〈si 〉. Here 〈si 〉
is the average of si in the steady state of the McCulloch-Pitts dynamics, given a
certain realisation of random patterns. Using the definition of the order parameter,
Equation (3.9), one finds

H (s )≈− 1
2

∑

µ

m 2
µ+

1
2

∑

i 6= j

wi j si 〈s j 〉+ 1
2

∑

i 6= j

wi j 〈si 〉s j . (3.5)

Using Hebb’s rule gives

H (s ) =− 1
2

∑

µ

m 2
µ+

1

N

∑

µ

∑

i

si x (µ)i mµ . (3.6)

Finally, one inserts this expression for H into Equation (3.3), performs the sum over
si , and averages over the stored patterns. This yields

F (β ) =− 1
2

∑

µ

〈m 2
µ〉−

1

βN

∑

i

¬

log
�

2cosh
�

β
∑

µ

mµx (µ)i

�

�¶

. (3.7)

Here 〈· · · 〉 denotes the average over random patterns, as in Equation (3.3).
A necessary condition for a local minimum of F is ∂ F /∂mµ = 0. For a single state,
we obtain Equation (3.14) from this condition, if we neglect the cross-talk term,
∑

µmµx (µ)j ≈m x (1)j . For a mixed state (3.19) with three non-zero components m > 0,

we find Equation (3.1) if we approximate
∑

µmµx (µ)j ≈
∑n
µ=1 mµx (µ)j =m z (n )j . Solving

these two equations allows us to determine the corresponding free energies.
It turns out that the free energy of the single state is lower than that for the mixed
state. The networks dynamics may nevertheless stay near the mixed state for a long
time, if that state is a local minimum of the free energy (a metastable state). This
happens if the Hessian matrix H with elements Hµν = ∂ 2F /∂mµ∂mν is positive
definite. The calculations summarised in Ref. [33] show that for n = 3, this is the
case when the noise level is below 0.46. Above this critical noise level, the mixed
state becomes unstable (the matrix of second free-energy derivatives is no longer
positive definite). This is consistent with the behaviour seen in Figure 3.1.
For larger values of p (or α= p/N ), one cannot neglect the cross-talk term anymore.
As a consequence it is more difficult to calculate the free energy. The corresponding

1H. Horner, Statistische Physik, Institut für theoretische Physik, Universität Heidelberg (2004).
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mean-field calculation is described in Refs. [1,34]. For single states, the condition
∂ F /∂mµ = 0 yields the self-consistent theory summarised in Section 3.4.

Answer ( 3.2) — The calculation outlined below is described in Ref. [1]. One starts
from Equation (3.32),

β (1−q ) =

∫ ∞

−∞

dz
p

2πσz

e −z 2/2σ2
z
�

β −β tanh2 (βm1+β z )
�

. (3.8)

Equation (6.20) shows that the argument in the square brackets is proportional to
the Dirac δ-function in the limit of large β ,

β
�

1− tanh2(βm1+β z )
�

= d
dz tanh (βm1+β z )≈ 1

2δ(m1+ z ) . (3.9)

Inserting this approximation into Equation (3.8) gives Equation (3.39b):

β (1−q )≈

√

√

√

2

πσ2
z

e −m 2
1/2σ

2
z . (3.10)

We see, in particular, thatβ (1−q ) assumes a finite limit asβ →∞. As a consequence,
q must tend to unity. In this deterministic limit, it therefore follows from Equation
(3.38) that

σ2
z =

α

[1−β (1−q )]2
. (3.11)

This is Equation (3.9a). Finally consider Equation (3.26). In the limit β → ∞,
tanh(βm1 + β z ) converges to sgn(βm1 + β z ). Using the definition of the error
function [Equation (2.40)], one finds

m1 = erf
�

m1/
Æ

2σ2
z

�

. (3.12)

This is Equation (3.39c).

Answer ( 3.3) — To derive Equation (3.41), we insert the definition y =m1/
p

2σ2
z

(page 46), into (3.39c). This gives

p
2σz y = erf(y ) . (3.13)

Combining Equations (3.39a) and (3.39b) gives

σz −
p

2/πe−y 2
=
p
α . (3.14)
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Figure 3.2: Numerical solution of Equation (3.15) for three values of α, α<αc (left),
α=αc (center), and α>αc (right). Shown are the l.h.s. of Equation (3.15), dashed
lines, and the r.h.s. of Equation (3.15), solid lines. See also Figure 2.16 in Ref. [1].
Exercise 3.3.

Substituting (3.14) into (3.13) gives

p
2y
�p
α+

p

2/πe−y 2
] = erf(y ) . (3.15)

This expression is equivalent to Equation (3.41). The solutions of Equation (3.15)
are illustrated in Figure 3.2. For α > αc, there are no solutions apart from y = 0
(which corresponds to m1 = 0). For α<αc, there are two additional solutions. The
relevant one is the one for which m1→ 1 as α→ 0, as predicted by the mean-field
theory for α� 1 in the limit of weak noise, Section 3.3. Starting with a large enough
value of α (α > αc), one can numerically solve Equation (3.15) to determine the
bifurcation valueαc where the two non-zero solutions occur. This yieldsαc ≈ 0.1379,
see Equation (3.42).
The phase diagram for finite noise levels is obtained by solving Equations (3.26),
(3.33), and (3.38) which are reproduced here in an equivalent form:

m1 =

∫

dz P (z ) tanh(βm1+β z ) , (3.16a)

q =

∫

dz P (z ) tanh2(βm1+β z ) , (3.16b)

P (z ) = (2πσ2
z )
−1/2 exp[−z 2/(2σ2

z )] with σ2
z =αq/[1−β (1−q )]2 . (3.16c)

These self-consistent equations can be solved numerically for m1, q , and σ2
z . As

in the deterministic limit, there can be multiple solutions. Which one to choose is
discussed in Ref. [34]. Figure 3.3 shows numerical solutions of Equations (3.16). The
Figure demonstrates how the order parameter decreases as the noise level increases,
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Figure 3.3: Solutions of Equation (3.15) for α= 0.05 (�), and α= 0.01 (◦). Shown
is m1 as a function of the noise level β−1. The vertical dashed lines indicate the
critical noise level above which the network ceases to function. See Fig. 3 in Ref. [34].
Exercise 3.3.

for α= 0.01 and α= 0.05. The vertical dashed lines in Figure 3.3 show the critical
noise levels for α= 0.01 and α= 0.05, above which the network ceases to function.
The values are consistent with the location of the phase boundary, the solid line in
Figure 3.5.

Answer ( 3.4) — The task is to demonstrate that Equation (3.51),

wi j =
1

N

∑

µν

x (µ)i [Q
−1]µνx (ν)j with Qµν =

1

N

∑

i

x (µ)i x (ν)i , (3.17)

ensures that all stored patterns are reproduced. To check this, we evaluate
∑

j wi j x (δ)j

for arbitrary δ= 1, . . . , p :

1

N

∑

j

∑

µ,ν

x (µ)i [Q
−1]µνx (ν)j x (δ)j =

∑

µ,ν

x (µ)i [Q
−1]µνQνδ =

∑

µ

x (µ)i δµδ = x (δ)i . (3.18)

In other words, all stored patterns are reproduced perfectly. But the learning rule
requires thatQ−1 exists. This requires that the stored patterns are linearly indepen-
dent.

Answer ( 3.5) — The mean-field theory for the Ising model is given by Equations
(3.6) and (3.7) with β = (kBT )−1 and

〈bi 〉= J
∑

j=nn(i )

〈s j 〉+h = J z 〈si 〉+h . (3.19)

Here z is the coordination number, the number of nearest neighbours in d dimen-
sions (Table 3.1). With the definition of the order parameter, the magnetisation
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Table 3.1: Critical temperature of the d -dimensional Ising model on a hypercubic
lattice, for h = 0. Exercise 3.5.

d 1 2 3 4 5
z 2 4 6 8 10

kBTc/J 02 2.2693 4.5114 6.6805 8.7786

m = 〈 1
N

∑

i si 〉, it follows that

m = tanh(β J z m +βh ) . (3.20)

Here we consider h = 0. In this case, Equation (3.20) has only the solution m = 0
if β J z < 1. For β J z > 1, by contrast, there are three solutions, m = 0, as well as
m =±|m | 6= 0. Using βc = (kBTc)−1, one defines the critical temperature Tc as

kBTc = J z . (3.21)

We say that the system is ferromagnetic for T < Tc, because it exhibits a non-zero
magnetisation m . Above Tc, the system is called paramagnetic, since m = 0. Ex-
panding tanh(x )∼ x − x 3/3 shows that the magnetisation vanishes as

m ∼±(3|δ|)1/2 (with δ= T−Tc
Tc
≤ 0) . (3.22)

as T → Tc from below. We say that the magnetisation tends to zero with critical
exponent 1

2 (Figure 3.4). It turns out that this is the correct behaviour for d ≥ 4. In
d = 1, 2, 3 dimensions, mean-field theory gets the critical exponent wrong because
the mean-field approximation neglects fluctuations.
The mean-field result (3.21) for the critical temperature becomes more accurate as
the dimension increases. This is shown in Table 3.1 which compares the result of the
mean-field approximation for Tc with the actual value of the critical temperature.
In the limit of d →∞, the mean-field prediction for Tc becomes exact (not shown).
In this limit there are enough neighbours to average over, just as in the mean-field
theory for the fully-connected Hopfield model, Section 3.4.

2Exact solution of one-dimensional Ising model: kBTc = 0.
3Exact solution of two-dimensional Ising model: kBTc = 2J / log(1+

p
2). See Equation (3.2) in

Newell & Montroll, Rev. Mod. Phys. 25 (1953) 353, and the discussion in the paragraphs below that
equation.

4Ferrenberg & Landau, Phys. Rev. B 44 (1991) 5081.
5Gaunt, Sykes & McKenzie, J. Phys. A 12 (1979) 871.
6Luijten, Binder & Blöte, Eur. Phys. J. B 9 (1999) 289.
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Figure 3.4: Solution m > 0 of the mean-field equation (3.20), for J z = 1 and h = 0
as a function of kBT =β−1 (solid line). Also shown is the approximate mean-field
solution near the critical temperature, Equation (3.22), dashed line. Exercise 3.5.

Answer ( 3.6) — To demonstrate that the one-step error probabilities (2.39) and
(3.40) have the same limit for small values of α, we start from Equation (3.41) and
show that y = 1/

p
2α is an approximate solution for α� 1. Using the asymptotic

expansion erf(y )∼ 1−exp(−y 2)/(
p
πy ) for large y , we conclude that

y = 1/
p

2α (3.23)

solves Equation (3.41) up to terms∝ exp[−1/(2α)] that vanish very rapidly as α→ 0.
This demonstrates that Equation (3.40) tends to (2.39) in the limit of small α.
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4 Solutions for exercises in Chapter 4

Answer ( 4.1) — Consider the first neuron in the network shown in Figure 2.9, with
w21 =−1, w12 = 2, and thresholds equal to zero. Using these values, Equation (3.1)
yields the following update rule

s ′1 =

¨

1 with probability [1+exp(4β s2)]−1 ,

−1 with probability [1+exp(−4β s2)]−1 .
(4.1)

Equation (4.3) with energy function H = −w12+w21
2 s1s2 = − 1

2 s1s2 gives, on the other
hand,

s1 =−1→ s ′1 = 1 with probability [1+exp(−β s2)]
−1 . (4.2)

This is different from Equation (4.1). So Equations (3.1) and (4.3) are not equiva-
lent. As stated in the problem formulation, the reason is that the weights are not
symmetric, w21 6=w12.

Answer ( 4.2) — The asynchronous deterministic update rule for 0/1 neurons was
derived in Exercise 2.8, n ′m = θH(bm ) where θH(b ) is the Heaviside function, and
bm =

∑

j wm j n j −µm is the local field with weights wm j and threshold µm . It was

shown that the energy function H =− 1
2

∑

i j wi j ni n j+
∑

i µi ni cannot increase under
the dynamics if the weights are symmetric and the diagonal weights vanish.
The following stochastic rule converges to the deterministic dynamics in the limit
of weak noise

n ′m =

¨

1 with probability p (bm ) ,
0 with probability 1−p (bm ) ,

(4.3)

with p (b ) = [1+exp(−βb )]−1. Note that the argument of the exponential function
lacks a factor of two, compared with Equation (3.1). Now show that this rule is
equivalent to Equation (4.3),

nm → n ′m 6= nm with probability [1+exp(β∆Hm )]
−1 , (4.4a)

where

∆Hm =H (. . . , n ′m , . . .)−H (. . . , nm , . . .) (4.4b)

= (n ′m −nm )
�

−
∑

j 6=m

wm j +w j m

2
n j +µm

�

− 1
2 wmm (n

′
m n ′m −nm nm ) .
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Figure 4.1: Left: algorithm to generate samples from the exponential distribution
exp(−s ). Right: histogram obtained from 1000 iterations of the algorithm (solid
line). The dashed line shows exp(−s ). Exercise 4.3.

If the weights are symmetric, and if the diagonal weights vanish, then the above
expression simplifies to

∆Hm =−bm (n
′
m −nm ) . (4.5)

This shows that Equations (4.3) and (4.4) are equivalent if the weights are symmetric
and the diagonal weights vanish.

Answer ( 4.3) — The task is to set up a Markov chain that has the exponential distri-
bution as its steady state. To this end we choose H = s . For this case, Algorithm 2
takes the form given in Figure 4.1. The Figure also shows a histogram generated by
1000 iterations of the corresponding Markov chain. The dashed line is exp(−s ).

Answer ( 4.4) — Start by writing down the transition matrix P with matrix elements
[P]i j = p (s (i )|s ( j ))

P=





0 0 1
1 0 0
0 1 0



 . (4.6)

The probability Pi (t ) of observing the system in state i at time t is given by




P1(t )
P2(t )
P3(t )



=Pt





P1(0)
P2(0)
P3(0)



 . (4.7)

The probabilities Pi (t ) are normalised since the initial probabilities are,
∑

i Pi (0) = 1.
The steady-state probabilities P ∗i are the components of the normalised eigenvector
of Pwith eigenvalue unity. This means P ∗1 = P ∗2 = P ∗3 =

1
3 .
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Figure 4.2: Solutions of the three double-digest problems from Table 4.1. Solutions
obtained by Vitalii Iarko and Erik Werner. Exercise 4.5.

Now check whether the detailed-balance condition holds. Evaluating the r.h.s
and l.h.s of Equation (4.9) shows that they differ, for example [P]21P ∗1 =

1
3 , while

[P]12P ∗2 = 0. So detailed balance is not satisfied. The reason is that the Markov chain
represents a cycle. Its steady state is an example of a non-equilibrium steady state,
a steady state with a non-zero probability current.1

Answer ( 4.5) — Solutions of the the double-digest problems listed in Table 4.1 are
shown in Figure 4.2. The solutions are not unique. For the first problem, for example,
there is one b -interval that contains three a -intervals. Any permutation of these
a -intervals generates a new solution, 3! solutions in total. In addition there is an
a -interval containing two b -intervals, increasing the degeneracy by a factor of two.
Finally, for each solution there is a reflected one. So the first problem has 2 ·2 ·3!= 24
distinct solutions. The second problem has 2·3!·3!= 72 solutions. The third problem
has only 2 ·2= 4 solutions.
A simple simulated-annealing algorithm for the double-digest problem suggests

1See for example M. Wilkinson & B. Mehlig, Phys. Rev. E 68 (2003) 040101(R).
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new configurations by exchanging a pair of entries in either the permutationσ or µ,
such as

[5976, 1543, 1319, 1120, 42]→ [5976, 42, 1319, 1120, 1543] .

This scheme of suggesting new configurations is symmetric (Section 4.1): the prob-
ability of suggestion [σ,µ]→ [σ′,µ′] is the same as suggesting the move [σ′,µ′]→
[σ,µ], starting at [σ′,µ′]. For the first two problems, an algorithm with these local
moves quickly finds all solutions, using βt = 10−8t (where t is the iteration number
of the Monte-Carlo algorithm). For the third problem, however, the algorithm arrests
in local minima. In this case, more general local moves are required, as described
by Goldstein & Waterman in Adv. Appl. Math. 8 (1987) 194.

Answer ( 4.6) — We start from Equation (4.18)

DKL=−
∑

x
Pdata(x ) log[PB(s = x )/Pdata(x )] , (4.8)

where the sum is over the distinct patterns x that occur with different frequencies
in the data set. Now we use the inequality − log z ≥−(z −1) to obtain a bound for
the Kullback-Leibler divergence:

DKL≥−
∑

x
Pdata(x )[PB(s = x )/Pdata(x )−1] ,

=
∑

x
[Pdata(x )−PB(s = x )] .

Finally, we use that the distributions are normalised,
∑

x
Pdata(x ) = 1 , and

∑

x
PB(s = x ) = 1 . (4.9)

It follows that DKL≥ 0. One verifies that DKL attains the global minimum DKL= 0 by
setting Pdata(x ) = PB(s = x ) in Equation (4.8).
To show that minimising DKL corresponds to maximising the log-likelihood logL ,
Equation (4.17), one starts from

DKL=
∑

x
Pdata(x ) log[Pdata(x )]−〈log PB(s = x )〉Pdata

. (4.10)

The first term is a constant, it does not depend on the weights. The second term
equals −p−1 logL . So minimising DKL corresponds to maximising logL .

Answer ( 4.7) — A restricted Boltzmann machine with M hidden neurons was trained
on the XOR problem with the CD-k algorithm (Algorithm 3). The weights were ini-
tially Gaussian random with mean zero and unit variance, the initial thresholds
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Figure 4.3: Kullback-Leibler divergence DKL achieved by training a restricted Boltz-
mann machine on the XOR problem, versus the number M of hidden neurons.
Upper bound (4.40), solid line, and numerical results using the CD-k algorithm
(Algorithm 3). Training parameters: νmax = 104, p0 = 20, k = 10, and η= 0.005. Sam-
pling parameters: the Markov chain was iterated for 107 iterations. Shown are the
results of 20 independent runs (◦). For each value of M , the best result is shown as •.
Schematic, adapted from numerical results obtained by Ehsan Ghane. Exercise 4.7.

were set to zero. The remaining training parameters are given in the caption. After
training, the model (Boltzmann) distribution was sampled using the Markov chain
(4.36). Then DKL was computed using Equation (4.18). For each value of M , this
process was repeated 20 times, for different initialisations of weights and thresholds.
The results are shown in Figure 4.3. We see that there is some spread of the DKL-values
found, likely because the CD-k algorithm fails to explore the global maximum. For
M > 1, the best training results are very close to the upper bound (4.40), indicating
that the XOR problem is hard to learn. For M = 1, the best result is below the upper
bound.
Instead of using the Markov chain (4.36) to sample the model probabilities after
training, one can evaluate them exactly since the number of neurons is quite small.
The model probabilities PB(v = x ) are obtained from PB(v , h ) by summing over the
states of the hidden neurons:

PB(v = x ) =
∑

h1=±1,...,hM=±1

Z −1 exp
�

−H (v = x , h )
�

. (4.11)

Here H is the energy function (4.29), and Z is the partition function (a normalisation
factor).



31

Figure 4.4: Illustration of shifter ensemble [15,47]. Exercise 4.8.

Answer ( 4.8) — The shifter ensemble is illustrated in Figure 4.4. The patterns are
constructed as follows [15,47]. The bits in the first row are chosen randomly, equal
to ±1 with probability 1

2 . The bits in the second row are obtained by copying the
bits of the first row. Then the pattern in the second row is shifted to the right with
probability 1

3 , to the left with probability 1
3 , and left unchanged with probability 1

3 .
Periodic boundary conditions are applied.
The three auxiliary indicator bits at the bottom of each pattern help the Boltzmann
machine to learn: they indicate whether the second row is shifted to the right, left,
or whether it remains unchanged. All patterns obtained in this way occur with the
same probability Pdata. All other patterns are assigned Pdata = 0.
This ensemble cannot be represented in terms of a Boltzmann machine that relies
only on two-point correlations, because the three-point correlations of the bits
are required (between a bit in the first row, in the second row, and an indicator
bit) [15,47].

Answer ( 4.9) — The energy function of the restricted Boltzmann machine is given
by Equation (4.29),

H =−
M
∑

i=1

N
∑

j=1

wi j hi v j +
N
∑

j=1

θ (v)j v j +
M
∑

i=1

θ (h)i hi . (4.12)

The deterministic update rule follows from Equation (4.30),

h ′m = sgn(b (h)m ) , and v ′n = sgn(b (v)n ) , (4.13)

with b (h)i =
∑N

j=1 wi j v j −θ
(h)
i and b (v)j =

∑M
i=1 hi wi j −θ

(v)
j . Consider first the changes

in H when updating the hidden neurons, keeping the states of the visible neurons
unchanged (constant). We write

H =−
M
∑

i=1

hi

�

N
∑

j=1

wi j v j −θ
(h)
i

�

+ const . (4.14)

This allows us to express the change in H as

H ′−H =−
M
∑

i=1

(h ′i −hi )
�

N
∑

j=1

wi j v j −θ
(h)
i

�

. (4.15)
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Suppose that hi = 1 and h ′i =−1, so that h ′i −hi < 0. It follows from Equation (4.13)

that the sign of
∑N

j=1 wi j v j −θ
(h)
i equals h ′i < 0. Therefore H ′−H < 0. Now assume

that hi = −1 and h ′i = 1. In this case h ′i − hi > 0 and
∑N

j=1 wi j v j − θ
(h)
i > 0. Again

H ′−H < 0. When h ′i = hi , the energy function does not change.
In summary, H cannot increase when updating the hidden neurons (keeping the
states of the visible neurons fixed). Here the argument works for synchronous
updates of the hidden neurons because there are no interactions between them.
For the Hopfield model, the energy function can increase under synchronous up-
dates (Exercise 2.9). In a similar fashion one shows that H cannot increase under
synchronous updates of the visible neurons, if one keeps the states of the hidden
neurons constant.

Answer ( 4.10) — Consider first a Boltzmann machine without hidden neurons, but
with thresholds. In this case, Equation (4.16) takes the form

PB(s = x ) = Z −1 exp
�

1
2

∑

i 6= j

wi j xi x j −
∑

i

θi xi

�

. (4.16)

To derive the learning rule for the thresholds, we need to evaluate the gradient of

∂ logL
∂ θm

=
∂

∂ θm

∑

µ

�

− log Z + 1
2

∑

i 6= j

wi j x (µ)i x (µ)j −
∑

i

θi x (µ)i

�

, (4.17)

with
log Z =

∑

s!=±1 ,... ,sN=±1

exp
�

1
2

∑

i 6= j

wi j si s j −
∑

i

θi si

�

. (4.18)

The derivative of log Z is

∂ log Z

∂ θm
= −

∑

s!=±1 ,... ,sN=±1

sm PB(s ) =−〈sm 〉model . (4.19)

Evaluating the derivative of the second term in Equation (4.17) in a similar way, one
obtains

∂ logL
∂ θm

=−p
�

〈xm 〉data−〈sm 〉model

�

. (4.20)

Comparing with Equation (4.26), we see that the same rule of thumb applies as
described in Chapter 6.1: the learning rule for the thresholds is obtained from that
of the weights by replacing the the state of the neuron in the weight-update formula
by −1.
Now consider a restricted Boltzmann machine with hidden neurons. There are
two thresholds in Equation (4.29), for the visible and for the hidden neurons. The
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derivatives of the likelihood w.r.t. the thresholds are computed following the steps
outlined in Chapter 4.4. We begin with the learning rule for θ (v)n . For a single pattern
x (µ), one finds

∂ logL
∂ θ (v)n

=−
�

x (µ)n −〈vn 〉model

�

. (4.21)

The model average of vn over the steady-state Boltzmann distribution can be gener-
ated using the Markov chain (4.36), with v t=0 = x (µ). In practice one approximates
the average by the k -th iterate, 〈vn 〉model ≈ vn ,t=k (CD-k algorithm). This gives

δθ (v)n =η
∂ logL
∂ θ (v)n

≈−η(vn ,t=0− vn ,t=k ) . (4.22)

This is Equation (4.39a). Now consider the learning rule for θ (h)m . For a single pattern
x (µ), one finds

∂ logL
∂ θ (h)m

=−
�

〈hm 〉data−〈hm 〉model

�

, (4.23)

where 〈hm 〉data is the average of hm over the Boltzmann distribution conditional on
the data point v = x (µ) (note that the average 〈· · · 〉data in Equation (4.20) is defined
differently). Using (4.33) and (4.34), one has 〈hm 〉data = tanh

�∑N
j=1 wm j x (µ)j − θ (h)m

�

.
The average 〈hm 〉model is is computed in two steps. First, one calculates the av-
erage of hm conditional on a given state v of the visible neurons. This yields
tanh

�∑N
j=1 wm j v j −θ (h)m

�

. Then one averages tanh
�∑N

j=1 wm j v j −θ (h)m

�

over the Boltz-

mann distribution using a Markov chain with v t=0 = x (µ). Using the CD-k approxi-
mation gives

δθ (h)m =η
∂ logL
∂ θ (h)m

≈−η
�

tanh
�

N
∑

j=1

wm j v j ,t=0−θ (h )m

�

− tanh
�

N
∑

j=1

wm j v j ,t=kθ
(h )
m

��

. (4.24)

This is Equation (4.39b).

Answer ( 4.11) — We start from Equation (4.32),

δw (µ)
mn =η

�

〈hm x (µ)n 〉data−〈hm vn 〉model

�

. (4.25)

The term 〈hm x (µ)n 〉data is defined as the average over all states of the hidden neurons
when the pattern x (µ) is clamped to the visible neurons:

〈hm x (µ)n 〉data =
∑

h1=0,1,...,hM=0,1

hm x (µ)n

�

M
∏

i=1

P (hi |v = x (µ))
�

. (4.26)



34 SOLUTIONS FOR EXERCISES IN CHAPTER 4

Figure 4.5: Kullback-Leibler divergence DKL obtained by training a restricted Boltz-
mann machine on the bars-and-stripes ensemble, versus the number M of hidden
neurons. Upper bound (4.40), solid line, and numerical results using the CD-k
algorithm (Algorithm 3), ◦. Training parameters: νmax = 104, p0 = 20, k = 10, and
η= 0.005. Shown are the results of 20 independent runs for each value of M , in each
case using the exact Boltzmann probabilities, Equation (4.11). Schematic, adapted
from numerical results obtained by Ehsan Ghane. Exercise 4.12.

Using normalisation,
∑

h j=0,1 P (h j |v = x (µ)) = 1, one finds

〈hm x (µ)n 〉data =
∑

hm=0,1

hm x (µ)n P (hm |v = x (µ)) . (4.27)

For 0/1 neurons, the stochastic update rule (4.30) is replaced by

h ′m =

¨

1 with probability p (b (h)m ) ,
0 with probability 1−p (b (h)m ) ,

(4.28)

with b (h)m =
∑

j wi j v j −θ
(h)
i and p (b (h)m ) = [1+ exp(−b (h)m )]

−1. Note that the argument
of the exponential functions lacks a factor of two, compared with Equation (3.1).
See also Exercise 4.2.
We use (4.28) to evaluate the average in Equation (4.27):

〈hm x (µ)n 〉data = p (b (h)m )x
(µ)
n . (4.29)

The second average in (4.25) is evaluated in an analogous fashion

〈hm vn 〉model = 〈p (b (h)m )vn 〉model . (4.30)

Contrast Equations (4.29) and (4.30) with Equations (4.34) and (4.35). For ±1-
neurons, the dependence b on the local field is tanh(b ), just as in Equation (3.7).
But for 0/1-neurons this is replaced by the sigmoid function p (b ).
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Answer ( 4.12) — Figure 4.5 shows the Kullback-Leibler entropy obtained by train-
ing a restricted Boltzmann machine with M hidden neurons on the bars-and-stripes
data set, as a function of M . Also shown is the upper bound (4.40). We see that
hidden neurons are needed to represent the bars-and-stripes ensemble, but the
numerical results for DKL are significantly below the upper bound. We conclude that
the bars-and-stripes ensemble is easier to learn than a general binary distribution
with N = 9 bits.
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Figure 5.1: Energy function H (w1, w2,θ = 3
2 ) for the Boolean AND problem. Exer-

cise 5.1.

5 Solutions for exercises in Chapter 5

Answer ( 5.1) — The energy function for a linear unit with threshold θ is given by
Equation (5.23), H = 1

2

∑

µ(t
(µ)−w ·x (µ)+θ )2. The derivatives of H with respect to

w and θ are

∂H

∂w
= p

�

〈t x 〉− 〈x x T〉w +θ 〈x 〉
�

,
∂H

∂ θ
= p

�

〈t 〉−w T〈x 〉+θ
�

. (5.1)

Here 〈· · · 〉 = p−1
∑p
µ=1 · · · is the average over patterns. For the AND problem (Fig-

ure 5.7),

〈t x 〉=
�

0
0

�

, 〈x x T〉= 1
4

�

2 1
1 2

�

, 〈x 〉= 1
2

�

1
1

�

, and 〈t 〉=− 1
2 . (5.2)

Now set the derivatives to zero to determine w and θ . This gives w = [1,1]T and
θ = 3

2 . With these weights and threshold, we find O (1) =w ·x (1)−θ =− 3
2 , O (2) =− 1

2 ,
O (3) =− 1

2 , and O (4) = 1
2 . So O (µ) 6= t (µ). In other words: H is non-zero.

However, one can check that the values obtained for w and θ correspond to a local
minimum of H at w = [1,1]T and θ = 3

2 , where H = 1
2 . Since H is non-zero at the

minimum, the optimal solution is only approximate. Figure 5.1 shows how the
energy function depends on w1 and w2 for θ = 3

2 .
An alternative way to minimise the quadratic function H is to use a singular-value
decomposition to evaluate the formal solution (5.21). Since we have a non-zero
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Figure 5.2: Half of all Boolean functions with two-dimensional inputs. The other
half is obtained by conjugation. (a) These functions are linearly separable. (b) The
XOR function is not linearly separable. Exercise 5.2.

threshold, and only one output, Equation (5.21) becomes

wk =
1

4

∑

µν

(t (µ)+θ )[Q−1]µνx (µ)k . (5.3)

The matrixQ [Equation (5.22)] takes the form:

Q=
1

4







0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 2






. (5.4)

Since this matrix is not invertible, we compute its pseudo-inverse using the singular-
value decomposition Q = USVT. Here S is the diagonal matrix containing the
singular values of Q. The pseudo-inverse is given by VS′UT, where the diagonal
matrix S′ is obtained by taking the reciprocals of all non-zero singular values. See
also Exercise 10.14. ReplacingQ−1 by VS′UT in Equation (5.3) yields w = [1, 1]T for
θ = 3

2 , the same as above.

Answer ( 5.2) — For two-dimensional inputs, there are 2(2
2) = 16 Boolean functions

in total. Eight of them are shown in Figure 5.2. The other eight are obtained by
conjugation (�↔�). We conclude that 14 Boolean functions with two-dimensional
inputs are linearly separable, two are not: the XOR and the XNOR function.
Boolean functions with three-dimensional inputs can be represented by colouring
the corners of a cube, either � or �. Since the cube has eight corners, there are
28 = 256 distinct ways of colouring, corresponding to 256 Boolean functions.
The function without any � is linearly separable. The eight functions with only one
� are linearly separable. The cube has 12 edges. The 12 functions with two � on an
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V1 V2 V3 target
− − − +1
+ − − +1
− + − −1
− − + −1
+ + − +1
+ − + +1
− + + −1
+ + + -

Figure 5.3: (a) Decision boundaries in input plane for Exercise 5.4. (b) Encoding of
the different regions and corresponding target values for Exercise 5.4.

edge are linearly separable. The cube has six faces. There are four functions with
three � per face. They are linearly separable. This yields 6 ·4= 24 linearly separable
functions. The following functions with four � are linearly separable: six functions
with all corners of a face black plus eight functions with four� connecting to a corner.
Conjugation gives more linearly separable functions, in total 2(1+8+12+24)+14=
104. The remaining functions are not linearly separable.

Answer ( 5.3) — The particular problem in V -space shown in Figure 5.16 is linearly
separable. Such output problems are generally linearly separable, because the
decision boundary in x -space separates � from �. This implies that the cluster of
�-corners of the hypercube in V -space is connected, so that the problem is linearly
separable.

Answer ( 5.4) — A possible solution is shown in Figure 5.3. Panel (a) shows how the
decision boundaries of the three hidden neurons divide up the input plane. Panel
(b) shows the target values for the different regions. A corresponding solution for
the output unit is O = (V1−V2−V3).

Answer ( 5.5) — The three-dimensional parity function is not linearly separable,
Figure 5.4. The proposed solution uses eight hidden neurons V (µ)

j , all with the same
threshold θ j = 2. Their weight vectors are chosen to equal the pattern vectors,
w j = x ( j ) (see also page 196). This means that

−θ j +
∑

k

w j k x µ)k =−2+
∑

k

x ( j )k x µ)k

¨

> 0 for j =µ ,

< 0 for j 6=µ .
(5.5)
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Figure 5.4: Three-dimensional parity function. (a) Value table. (b) Representation
in input space. Exercise 5.5.

It follows from Equation (5.35) that V (µ)
j = 1 if j = µ, but equal to zero otherwise.

So the hidden neurons are winning neurons (page 183). The weights of the output
neuron depend on how the inputs are labeled. Consider the choice shown in Figure
5.4. Panel (a) shows the value table, while panel (b) shows its representation in
input space. We see that inputs with odd values of µ have t (µ) =+1, inputs with even
values of µ have t (µ) =−1. We obtain the correct outputs with O (µ) =W ·V (µ) if we
choose W = [1,−1, 1,−1, 1,−1, 1,−1]T.

Answer ( 5.6) — A possible solution for the hidden neurons is shown in Figure 5.5.
The weight vectors are

w 1 =

�

−3
4

�

, w 2 =

�

4
4

�

, w 3 =

�

−1
−8

�

. (5.6)

The thresholds are read off from the intersections of the decision boundary with
the x2-axis [Equation (5.13)]: θ1 = 12, θ2 = 12, and θ3 = 4. A possible choice for the
weights and threshold of the output neuron can be read off from the value table in
Figure 5.5: W = [−1,−1,−1]T and Θ = 1

2 , so that O = θH(−V1−V2−V3+1).

Answer ( 5.7) — The decision boundaries of the four hidden neurons are shown
in Figure 5.22(left), the lines [1, x2], [0, x2], [x1,1], and [x1,0]. Consider the deci-
sion boundary [1, x2] of neuron j = 1. Points x on the decision boundary satisfy
Equation (5.13),

w 1 ·x −θ1 =
�

w11 w22

�

�

1
x2

�

−θ1 = 0 . (5.7)
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V1 V2 V3 target
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 1 1 0
1 0 1 0
1 1 0 0
1 1 1 -

Figure 5.5: (a) Input plane for Exercise 5.6. (b) Value table for Exercise 5.6.

Figure 5.6: Decision boundaries and corresponding weights for Exercise 5.7.

This yields w11 = θ1 and w22 = 0. Choosing w11 = 1 gives θ1 = 1.

The other weight vectors and thresholds are found in a similar fashion. In summary:

w 1 =

�

1
0

�

,θ1 = 1 , w 2 =

�

1
0

�

,θ2 = 0 , w 3 =

�

0
1

�

,θ3 = 1 , w 4 =

�

0
1

�

,θ4 = 0 . (5.8)

The overall decision boundary is determined by Equation (5.37). It is shown in
Figure 5.6.

For the second part of the question, compare the right panel in Figure 5.22 with
the left one: the codes 1101 and 1111 were interchanged. As a consequence, the
third hidden neuron assumes different values on the weight-vector side of the
decision boundary corresponding to w 3. This is renders it impossible to solve the
classification problem shown in the right panel with the decision boundaries drawn.

Answer ( 5.8) — Weight vectors for the three decision boundaries in Figure 5.23 are
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Figure 5.7: Left: weights and decision boundaries in the input plane for Exercise 5.8.
Right: output problem for Exercise 5.8.

shown in Figure 5.7. From Equation (5.13) we infer

w 1 =

�

1
1

�

,θ1 = 1 , w 2 =

�

1
0

�

,θ2 =
1
2 , w 3 =

�

0
1

�

,θ3 =
4
5 . (5.9)

The resulting output problem is shown on the right in Figure 5.7. The problem can be
solved by a decision boundary that contains the points V 1 = [

1
2 , 1, 0]T, V 2 = [1, 1

2 , , 0]T,
and V 3 = [0, 0, 1]T. Equation (5.13) gives three conditions for these three points:

W1+
1
2 W2 =Θ , W2+

1
2 W1 =Θ , and W3 =Θ . (5.10)

The solution is W = [ 23Θ, 2
3Θ,Θ]T. To map the origin V = [0,0,0]T to output O = 1,

we must choose a negative threshold, for example Θ =−1. In this case, the output
neuron calculates O = θH(− 2

3 V1− 2
3 V2−V3+1).

Answer ( 5.9) — The probability pn is defined on page 85, pn = (
1
2 )

n
�

n−1
N−1

�

. The bino-

mial coefficient equals
�

n−1
N−1

�

= (n −1)!/[(N −1)!(n −N )!] for n ≥N , and is defined to
be zero otherwise. As a consequence, pn is normalised:

∑∞
n=0 pn = 1. To evaluate

the mean
∑∞

n=0 npn , use that n
�

n−1
N−1

�

=N
�

n
N

�

. This gives:

∞
∑

n=0

npn = 2N
∞
∑

n=0

( 12 )
n+1

�

n

N

�

= 2N , (5.11)

because the sum on the r.h.s evaluates to unity (normalisation of pn ).

Answer ( 5.10) — Figure 5.8 shows all problems obtained by randomly colouring
three random points in two dimensions that are in general position [Figure 5.10].
Out of eight patterns, there are six that are linearly separable. So P (3,2) = 3

4 as
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Figure 5.8: All problems obtained by randomly colouring three given points in
general position with the origin. Six of the problems are homogeneously linearly
separable. Exercise 5.10.

Equation (5.29) predicts for p = 3 patterns in N = 2 dimensions. Note: which
problems are homogeneously separable depends on the location of the points w.r.t
the origin and w.r.t. each other. But for given locations, it is always the case that
P (3, 2) = 3

4 .

Answer ( 5.11) — A linear unit can solve a classification problem O (µ)
i = t (µ)i for

i = 1, . . . , N and µ = 1, . . . , p if the inverse of the overlap matrix (5.22) exists. This
is the case if the columns of the overlap matrix are linearly independent, and this
requires linearly independent patterns x (µ), and therefore p ≤N .
Introducing a nonlinear, monotonically increasing activation function g (b ) such
as the sigmoid function does not help, as explained in Ref. [1]: since the activation
function is monotonically increasing, it can be inverted to map the targets g −1(t (µ)i ).
Applying g −1 to the network output results in a linear function. One concludes that
a single neuron with a continuous, non-linear, monotonically increasing activation
function cannot solve the classification problem if there are more than N patterns.
Contrast this with the solution of the AND problem in Figure 5.7 with a single neuron
with activation function g (b ) = sgn(b ).

Answer ( 5.12) — Equation (5.38) is quoted by Hertz, Krogh & Palmer [1]. One ob-
tains it using the asymptotic approximation

�

p −1

k

�

∼
2p−1

p

(p −1)π/2
exp

�

−
(k − (p −1)/2)2

(p −1)/2

�

, (5.12)

which is valid for large p at fixed k . One inserts Equation (5.12) into (5.29), and
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Figure 5.9: P (αN , N ) versus α for N = 10 (schematic). Numerical evaluation of
Equation (5.29), symbols. Approximate expression (5.38), solid line. Exercise 5.12.

Table 5.1: First row: numberNn of linearly separable Boolean functions with n input
components, from Ref. [74]. Second row: fractionNn/2

2n
. Third row: numerical

estimate obtained using the procedure described in the solution to Exercise 5.13.
For n = 4 and n = 5, only 10000 Boolean functions were sampled. Training for
20 epochs with learning rate η= 0.05, averaging over Gaussian distributed initial
weights with mean zero and standard deviation 1/n . The initial thresholds were set
to zero. Numerical results obtained by Ludvig Storm. Exercise 5.13.

n 2 3 4 5
Nn 14 104 1882 94572
Nn/2

(2n ) 7
8

13
32

941
32768

23643
1073741824

0.875 0.406 0.0287 2.177×10−5

approximates the sum over k as an integral (the lowest-order term in a Poisson
summation1). Integrating the Gaussian in (5.12), one gets an error function. Taking
the limit of N →∞ at fixed α gives Equation (5.38) . This approximation works very
well for N as low as 10 (Figure 5.9), and it demonstrates how P (αN , N ) narrows to a
step function when N →∞ at fixed α: when α> 2, the error function tends to zero
in the limit, when α< 2 it tends to unity.

Answer ( 5.13) — An n-dimensional cube has 2n corners. So there are Nn = 2(2
n )

Boolean functions with n-dimensional inputs. This givesN 2 = 16 andN3 = 256 as
derived in Exercise 5.2.
The McCulloch-Pitts neuron has weights w j and a threshold θ . The weights are
updated using the learning rule (5.18). For a single output unit, this rule simplifies

1E. W. Weisstein, Poisson Sum Formula,mathworld.wolfram.com/PoissonSumFormula.html
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Figure 5.10: Geometrical interpretation of the learning rule (5.14) for the threshold
of a binary threshold neuron. Exercise 5.13.
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Figure 5.11: Input space and network layout for the Boolean function shown in
Figure 5.25. The network is made out of two XOR units. Exercise 5.14.

to

δw (µ)
n =η(t

(µ)−O (µ))x (µ)n . (5.13)

As illustrated in Figure 5.7, the decision boundary for linearly separable Boolean
functions has non-zero thresholds. So we need a learning rule for the thresholds as
well. A guess is to simply replace x (µ)n by −1 in Equation (5.13):

δθ (µ) =−η(t (µ)−O (µ)) . (5.14)

To see that this rule does the trick, consider its geometric interpretation, shown in
Figure 5.10. Panel (a) depicts a configuration where x (µ) is on the wrong side of the
decision boundary. We can rectify the error by increasing the threshold a little bit, by
adding δθ (µ) =η> 0 as shown in panel (b). Since� stands for t (µ) =−1, we can write
this rule as δθ (µ) =−ηt (µ). A second example is shown in panel (c). Note that w2 < 0,
so the threshold shown in this panel is negative. If we want to shift the decision
boundary to the location shown in panel (d), we need to subtract a small positive
number from θ , to increase its magnitude. So δθ =−η. Since � stands for t (µ) = 1,
this rule can again be written as δθ =−ηt (µ). Both conclusions are consistent with
Equation (5.14), because subtracting O (µ) does not make a difference because by
assumption we try to correct an error, for which O (µ) =−t (µ).
Now train the McCulloch-Pitts neuron on Boolean functions with n input com-
ponents for a large number of steps. A given function is linearly separable if the
algorithm finds a solution. If the algorithm does not, then it is likely (but not certain)
that the function is not linearly separable. So the algorithm produces a lower bound
to the number of linearly separable Boolean function.
Table 5.1 summarises the results obtained by repeating this procedure many times.
The table lists the actual numberNn of linearly separable Boolean functions [74],
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their fractionNn/2
(2n ), and the numerically determined fraction, obtained by train-

ing for 20 epochs with learning rate η = 0.05 and averaging over Gaussian initial
weights with mean zero and standard deviation n−1. The initial thresholds were set
to zero.
The algorithm tends to find all linearly separable Boolean functions for n = 2, 3, and
4. For n = 4, 5, only 10000 functions were randomly sampled to estimate the fraction
Nn/2

(2n ). The numerical result for n = 5 is slightly lower than the exact one, because
the algorithm misses some linearly separable functions.
Finally, we infer from Table 5.1 that the fraction of linearly separable Boolean func-
tions decreases very rapidly as the number n of input components increases, be-
cause the total number of Boolean functions increases much more quickly than the
number of linearly separable ones.

Answer ( 5.14) — The Boolean function shown in Figure 5.25 is the three-dimen-
sional parity function. The input-space representation in Figure 5.11 demonstrates
that this function is not linearly separable. A network layout with two XOR networks
represents this function (Figure 5.11). See also Exercise 7.8.
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6 Solutions for exercises in Chapter 6

Answer ( 6.1) — The fact that the eigenvalues of the data covariance matrix (6.24)
are real is demonstrated on page 105. The argument goes as follows. Since the matrix
C = 〈δxδx T〉 is symmetric, it has a complete orthonormal basis of eigenvectors
u α. This allows us to write C =

∑

αλαu αuT
α with real eigenvalues λα. To show

that the eigenvalues are non-negative, we use λβ =uT
βCu β to conclude that λβ =

〈(δx Tu β )2〉 ≥ 0. Here we used that the scalar product (2.14) is symmetric, δx Tu β =
uT
βδx .

Answer ( 6.2) — Consider first Figure 6.10. The patterns are

x (1) =

�

−2
− 1

2

�

, x (2) =

�

−1
− 1

4

�

, x (3) =

�

1
1
4

�

, x (4) =

�

2
1
2

�

. (6.1)

Since the mean 〈x 〉= p−1
∑p
µ=1 x (µ) is zero, the elements of the covariance matrix are

given by Ci j = 〈xi x j 〉. We find

C=
1

4

�

10 5
2

5
2

5
8

�

. (6.2)

The largest eigenvalue is λ1 = 85/32, with eigenvector u 1 ∝ [4,1]T. The second
eigenvalue vanishes, λ2 = 0, because there is no data variance orthogonal to the
principal direction.
The pattern vectors in Figure 6.11 are

x (1) =

�

−6
−5

�

, x (2) =

�

−2
−4

�

, x (3) =

�

1
3

�

, x (4) =

�

2
2

�

, x (1) =

�

5
4

�

. (6.3)

Their mean vanishes, and the covariance matrix is given by

C=
1

5

�

70 65
65 70

�

. (6.4)

Its largest eigenvalue is λ1 = 27, and the corresponding eigenvector is u 1∝ [1, 1]T.
This is the principal direction. The second eigenvalue isλ2 = 1. It is not zero because
the data in Figure 6.11 scatters a little bit around the principal direction.

Answer ( 6.3) — In the notation used here, Eq. (5) from Ref. [77] reads:

wt = yt −ηt
∂H
∂ w

�

�

wt
, (6.5a)

at+1 =
�

1+
Æ

4a 2
t +1

�

/2 with a0 = 1 , (6.5b)

yt+1 =wt + (at −1)(wt +wt−1)/at+1 , (6.5c)
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Figure 6.1: Weight change∆w =wB−wA versus iteration number T . Exercise 6.4.

where ηt is a learning rate that may depend on the time-step index t . The steps
necessary to derive Equation (6.35) are described by Sutskever [78]. With the defini-
tions

δwt =wt −wt−1 and αt =
at

at −1
, (6.6)

Equation (6.5c) can be rewritten as

yt =wt−1+αt−1δwt−1 . (6.7)

Inserting this into Equation (6.5a), one finds

δwt =αt−1wt−1+ηt−1
∂H
∂ w

�

�

wt−1+αt−1wt−1
. (6.8)

This is Equation (6.31). As one iterates Equation (6.5b), at increases. As a conse-
quence,

�

1+
Æ

4a 2
t +1

�

/2→ at+
1
2 . The recursion at+1 = at+

1
2 is solved by at = c+t /2

for large t . This means that (at −1)/at+1→ 1−3/(t +2c +1). So αt approaches unity
from below as stated in Section 6.5.
Nesterov developed the method to optimise convex and continuous functions H .
He derived a particular form of the adaptive learning rate ηt for this case, that
ensures rapid convergence. In neural-network applications, learning rate ηt and
momentum parameter αt are usually adjusted by trial and error [78].

Answer ( 6.4) — We start from Equation (6.31) which takes the form

δw (t ) =−η
∂H

∂ w

�

�

w (t )
+αδw (t−1) . (6.9)

Assume that δw (0) = 0. Between wA and wB, H decreases as a function of w with a
constant slope. Denote this slope by ∂H /∂ w =−s with s > 0. Iterating Equation
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(6.9), we obtainδw (t ) =ηs (1−αt )/(1−α). As a consequence, the total weight change
after T iterations reads

wT −w0 =
ηs

1−α

�

T −
1−αT

1−α

�

. (6.10)

How many steps are required to get from wA to wB, for ηs = 1
2 say? Equation (6.10)

gives

∆w = 1
2

1

1−α

�

T −
1−αT

1−α

�

(6.11)

for the total weight change∆w =wB−wA. Figure 6.1 shows∆w versus T for different
values of α. We see that∆w is larger for larger values of α. Since α < 1, Equation
(6.11) simplifies for T � 1:

∆w ≈ 1
2

1

1−α

�

T −
1

1−α

�

. (6.12)

In this case the number of steps to go from wA to wB is approximately

T ≈ 2(1−α)(wB−wA) +
1

1−α
. (6.13)

Now assume that we iterated T1 steps to reach wB, or more precisely to reach a
weight value just larger than wB. Consider what happens next, between wB and wC

(Figure 6.12). Here ∂H /∂ w = 0, so that Equation (6.9) simplifies to

δw (t ) =αδw (t−1) . (6.14)

We see: for α= 0 the algorithm arrests, but not for α< 0≤ 1. The additional number
T2 of steps to reach wC is given by

wC −wT1
=δw (T1)

T2−1
∑

t=0

αt =ηs
1−αT1

1−α
1−αT2

1−α
. (6.15)

Answer ( 6.5) — Consider first the learning rule for the output weights, Wmn . Using
Equation (7.45), we find that the derivative of H w.r.t. Wmn evaluates to

∂H

∂Wmn
=
∑

iµ

t (µ)i −O (µ)
i

O (µ)
i (1−O (µ)

i )

∂ σ(B (µ)i )
∂Wmn

, (6.16)

with B (µ)i =
∑

j Wi j V (µ)
j −Θi . We compute the derivative ofσ using Equation (6.20).

This gives
∂ σ(B (µ)i )

Wmn
=σ(B (µ)i )[1−σ(B

(µ)
i )]δi m V (µ)

n . (6.17)
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Figure 6.2: Network layout for Exercise 6.6. See also Figure 6.13.

Using Equations (6.16) and (6.17) gives

δWmn =−η
∂H

∂Wmn
=η

∑

µ

(t (µ)m −O (µ)
m )V

(µ)
n . (6.18)

Now consider the learning rule for wmn . Following the steps outlined in Section 6.1,
one finds

δwmn =η
∑

iµ

∆
(µ)
i Wi mσ

′(b (µ)m )x
(µ)
n , (6.19)

with ∆(µ)i = t (µ)i −O (µ)
i . Note that this expression differs from Equation(6.6b) by a

factor ofσ′(B (µ)i ).

Answer ( 6.6) — The network from Figure 6.13 is reproduced in Figure 6.2. How
to derive the update formulae (or learning rules) for weights and thresholds is
described in Section 6.1. The learning rules for the output weights and thresholds
are simplest. To obtain δWmn we take the derivative of H with respect to Wmn and
multiply with −η,

δWmn =η(tm −Om )g
′(Bm )V

(2)
n . (6.20)

This expression corresponds to Equation (6.6a), but here and in the following we
leave out the sum over the pattern index µ, to get the stochastic gradient-descent
algorithm. The learning rule for Θm is obtained from Equation (6.20) by setting
V (2)

n =−1 [Equation (6.11a)].
To find the learning rule for w (2)

mn , we need to calculate

∂ Oi

∂ w (2)
mn

=
∑

q

∂ Oi

∂ V (2)
q

∂ V (2)
q

∂ w (2)
mn

. (6.21)
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Using ∂ Oi/∂ V (2)
q = g ′(Bi )Wi q and ∂ V (2)

q /∂ w (2)
mn = g ′(b (2)q )δq m V (1)

n , we find

δw (2)
mn =η

∑

i

(ti −Oi )g
′(Bi )Wi m g ′(b (2)m )V

(1)
n . (6.22)

This is equivalent to Equation (6.8). The learning rule for θ (2)m is obtained upon
replacing V (1)

m by −1.
The learning rule for w (1)

mn requires one more application of the chain rule

∂ Oi

∂ w (1)
mn

=
∑

q

∂ Oi

∂ V (2)
q

∑

j

∂ V (2)
q

∂ V (1)
j

∂ V (1)
j

∂ w (1)
mn

. (6.23)

Using ∂ V (2)
q /∂ V (1)

j = g ′(b (2)q )w
(2)
q j and ∂ V (1)

j /∂ w (1)
mn = g ′(b (1)j )δ j m xn , we find

δw (1)
mn =η

∑

i

(ti −Oi )g
′(Bi )

∑

q

Wi q g ′(b (2)q )w
(2)
q m g ′(b (1)m )xn . (6.24)

Compare with Equation (6.28) in Exercise 6.7. Finally, the learning rule for θ (1)m is
obtained by setting xn =−1.

Answer ( 6.7) — The network is drawn in Figure 6.3. First, to compute the recursion
for the derivatives of V (`)

i with respect to w (`′)
mn for `′ < `, one uses the chain rule

∂ V (`)
i

∂ w (`′)
mn

=
∂

∂ w (`′)
mn

g
�∑

j

w (`)
i j V (`−1)

j −θ (`)i

�

= g ′(b (`)i )
∑

j

w (`)
i j

∂ V (`−1)
j

∂ w (`′)
mn

. (6.25)

Second, for `′ = ` the result is different. Note that V (`−1)
j does not depend on w (`)

mn ,
because of the feed-forward layout of the network (Figure 6.3). Therefore

∂ V (`)
i

∂ w (`)
mn

= g ′(b (`)i )
∑

j

∂ w (`)
i j

∂ w (`)
mn

V (`−1)
j = g ′(b (`)i )δi m V (`−1)

n . (6.26)

This is analogous to Equation (6.7d). Third, put these results together to derive the
learning rule for layer L −2. We minimise H = 1

2

∑

i (ti −Oi )2 (leaving out the sum
over µ),

δw (L−2)
mn =η

∑

i

(ti −V (L )
i )

∂ V (L )
i

∂ w (L−2)
mn

(6.27)

Iterating twice with the recursion (6.25) and then using (6.26) gives

δw (L−2)
mn =η

∑

i

(ti −V (L )
i )g

′(b (L )i )
∑

j

w (L )
i j g ′(b (L−1)

j )w (L−1)
j m g ′(b (L−2)

m )V (L−3)
n . (6.28)
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Figure 6.3: Network layout for Exercise 6.7.

Answer ( 6.8) — To derive Equation (6.16), we start from

δw (`)
mn =−η

∂H

∂ w (`)
mn

with H = 1
2

∑

i

�

ti −V (L )
i

�2
. (6.29)

Here we left out the sum over pattern indices µ in H , in order to get the stochastic
gradient-descent algorithm (Sections 6.1 and 6.2). Evaluating the derivative yields

δw (`)
mn =η

∑

i

�

ti −V (L )
i

� ∂ V (L )
i

∂ w (`)
mn

=η
∑

i

(ti −V (L )
i )

∑

q

∂ V (L )
i

∂ V (`)
q

∂ V (`)
q

∂ w (`)
mn

, (6.30)

where we applied the chain rule twice. Equation (6.14) allows us to compute the
right-most derivative

∂ V (`)
q

∂ w (`)
mn

= g ′(b (`)q )δmq V (`−1)
n . (6.31)

In summary,

δw (`)
mn =η

∑

i

�

ti −V (L )
i

�

g ′(b (`)m )
∂ V (L )

i

∂ V (`)
m

V (`−1)
n . (6.32)
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Comparing with Equation (6.15), δw (`)
mn =ηδ

(`)
m V (`−1)

n , we find

δ(`)m =
∑

i

�

ti −V (L )
i

�∂ V (L )
i

∂ V (`)
m

g ′(b (`)m ) . (6.33)

This is equivalent to Equation (6.16),

δ(`−1)
j =

∑

i

�

ti −V (L )
i

� ∂ V (L )
i

∂ V (`−1)
j

g ′(b (`−1)
j ) , (6.34)

which answers the first part of the question.
To derive the recursion (6.17), we use the chain rule once more,

∂ V (L )
i

∂ V (`−1)
j

=
∑

q

∂ V (L )
i

∂ V (`)
q

∂ V (`)
q

∂ V (`−1)
j

=
∑

q

∂ V (L )
i

∂ V (`)
q

g ′(b (`)q )w
(`)
q j . (6.35)

Substituting this expression into Equation (6.34) gives

δ(`−1)
j =

∑

i

�

ti −V (L )
i

�

∑

q

∂ V (L )
i

∂ V (`)
q

g ′(b (`)q )w
(`)
q j g ′(b (`−1)

j ) , (6.36)

=
∑

q

�

∑

i

�

ti −V (L )
i

�∂ V (L )
i

∂ V (`)
q

g ′(b (`)q )

�

w (`)
q j g ′(b (`−1)

j ) .

The last step is to compare with Equation (6.33). This yields Equation (6.17):

δ(`−1)
j =

∑

q

δ(`)q w (`)
q j g ′(b (`−1)

j ) . (6.37)

Answer ( 6.9) — Assume that there are two patterns, x (1) = [10,10]T with target
t (1) = −1, and x (2) = [0,−1]T with t (2) = 1. Figure 6.4 shows the energy function
H (w1, w1,θ = 0) for a single neuron with sigmoid activation function. The steep
gradient near the anti-diagonal is a consequence of the large mean 〈x 〉.1 To see this,
evaluate the gradient of H with respect to w1, set w2 = 0 and x (1) = [x , x ]T,

∂H

∂ w1
=
(2+e−x w1)x e−x w1

(1+e−x w1)3
. (6.38)

We see that the gradient is proportional to x . So the large gradient is due to the large
mean value of the patterns.

1Hinton, G., A bag of tricks for mini batch gradient descent. Neural Networks for Machine Learning
(2012).
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Figure 6.4: Contour plot of the energy function H (w1, w2,θ = 0) for Exercise 6.9.

Answer ( 6.10) — To find the global minimum x ∗ of f (x ) subject to the constraint
g (x ) = 0, one determines the singular points of the LagrangianL = f (x ) +λg (x ),

∇ f (x ∗) =−λ∇g (x ∗) . (6.39)

Here λ is the Lagrange multiplier. Equation (6.39) says that the gradients of f and g
are proportional to each other.
Now consider the following example. Minimise f (x1, x2) = x1 subject to the con-
straint g (x1, x2) = x 3

1 − x 2
2 = 0. The global minimum of this constrained optimisation

problem is at the origin, x ∗ = [0, 0]T. But at this point we have:

∇ f (x ∗) =

�

1
0

�

, while ∇g (x ∗) =

�

0
0

�

. (6.40)

This is not a solution of Equation (6.39). But note that this is quite a special case.
The problem occurs because∇ f (x ∗) 6= 0, but the gradient of g vanishes at x ∗ since
the constraint has a cusp at this point.2

Answer ( 6.11) — The Lagrangian for the problem readsL = x1−x 2
2 /2+λ(x

2
1+x 2

2−1).
Its derivatives are

∂L
∂ x1

= (2λx1+1) ,
∂L
∂ x2

= (2λ−1)x2 ,
∂L
∂ λ
= x 2

1 + x 2
2 −1 . (6.41)

Setting the first two gradients to zero yields x ∗1 = −1/(2λ∗), and x ∗2 = 0 or λ∗ = 1
2 .

Substituting the first solution into ∂L
∂ λ gives λ∗ =± 1

2 , and so

x ∗1 =∓1 , x ∗2 = 0 , λ∗ =±
1

2
. (6.42)

2Nonnenmacher, Lagrange multipliers can fail to determine extrema, College Mathematics Journal,
January 2003, Taylor & Francis.
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Figure 6.5: Contours of the function f (x1, x2) and the constraint x 2
1 + x 2

2 = 1. Exer-
cise 6.11.

One finds the same solutions if one starts instead fromL = x1−x 2
2 /2−λ(x

2
1 +x 2

2 −1).
Substituting these solutions into f (x ), one finds that its minimum subject the con-
straint is assumed at x ∗ = [−1, 0]T (Figure 6.5). Note that the Lagrangian has a saddle
at this solution.
Concerning the geometric picture underlying the method,3 note that Equation (6.41)
ensures that the gradients of f (x ) = x1− x 2

2 /2 and of x 2
1 + x 2

2 −1 w.r.t. x are propor-
tional when the constraint is satisfied, at x 2

1 + x 2
2 −1= 0. The Lagrange multiplier is

the constant of proportionality between the two gradients.

3Nonnenmacher, Lagrange multipliers can fail to determine extrema, College Mathematics Journal,
January 2003, Taylor & Francis.
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7 Solutions for exercises in Chapter 7

Answer ( 7.1) — To start with, note that all singular points ofL are saddle points.
This can be shown as follows. From Equation (7.58), we find for the elements of the
second variation ofL :

∂ 2L
δw 2

=M ,
∂ 2L
δλδw

= êq , and
∂ 2L
δλ2

= 0 . (7.1)

The corresponding Hessian matrix is

�

M êq

êT
q 0

�

. (7.2)

We deduce that it must have eigenvalues of different signs because sandwiching
this matrix between [0, . . . , 0, 1]T and [0, . . . , 0, 1] yields zero.
The Lagrange equations (7.58) are a necessary, not a sufficient condition for a
minimum of 1

2δw ·Mδw subject to the constraint, but Figure 7.14 illustrates that
[δw ∗,λ∗] is a minimum for our problem, for any given value of q .

Answer ( 7.2) — The solution is shown in Figure 7.1 (see also Figure 7.6). The four
weight vectors w j ( j = 0, 1, 2, 3) are obtained from Equation (7.6):

w 0 =

�

−δ
−δ

�

, w 1 =

�

−δ
δ

�

, w 2 =

�

δ
−δ

�

, w 3 =

�

δ
δ

�

, (7.3)

The thresholds are all the same, equal to 2(δ−1) (see Section 7.1). The intersections
of the decision boundaries with the x2-axis are determined by Equation (5.13).
The 4-digit codes shown in Figure 7.1 describe the output of the hidden neurons.
Inserting these into the function O = sgn(−V0+V1+V2−V3), shows that W0 =−1, W1 =
1, W2 = 1, W3 =−1 and Θ = 0 solve the classification problem.

Answer ( 7.3) — Figure 7.2(a) shows the r.m.s. error δ(`)rms =
1
N

∑N
j=1[δ

(`)
j ]

2 for differ-
ent layers ` as a function of the number of training epochs, for the network from
Figure 7.9, with N = 5 neurons per layer. All activation functions are g (b ) = tanh(b ).
The network is trained on the iris data set [70]. The weights were initialised as
independent Gaussian random numbers with mean zero and varianceσ2

w = 0.1/N .
During the first 500 epochs, the gradients are small. Their magnitude decreases ex-
ponentially as one moves away from the output layer because the maximal Lyapunov
exponent (7.21) is negative for the given weight initialisation.
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Figure 7.1: Shows the solution of XOR problem discussed in Exercise 7.2, for δ= 2
[Equation (7.3)]. Exercise 7.2.

After around 1000 training epochs, the network starts to learn. The errors increase
at first, resulting in desired weight changes reducing the energy function. At later
times, the errors decrease as the network becomes better at classifying the training
set.
The vanishing-gradient phase appears in Figure 7.2(a) because the initial random
weights were too small, giving rise to a very negative maximal Lyapunov exponent.
For a slightly larger variance σ2

w , the vanishing-gradient problem is less severe,
Figure 7.2(b).
However, increasing the variance σ2

w too much causes the gradients to explode.
Ideally, one should determine the variance σ2

w such that the maximal Lyapunov
exponent of the network vanishes. For N →∞, this can be ensured using Equation
(7.25). But for small values of N , fluctuations of the singular values Λ(t )j [Equa-
tion (7.20)]may still cause convergence problems.

Answer ( 7.4) — We start with Equation (7.30),

δ(L−1) =δ(L )w (L ,L−1)g ′(b (L−1)) . (7.4)

The error δ(L−2) is obtained using the recursion (7.33):

δ(`−1) =δ(`)w (`,`−1)g ′(b (`−1)) +δ(`+1)w (`+1,`−1)g ′(b (`−1)) , (7.5)

valid for `≤ L −1. This recursion reflects that every neuron `≤ L −2 can be reached
backwards directly from `, and also from `+1 via a skipping connection. So we have
for δ(L−2):

δ(L−2) =δ(L−1)w (L−1,L−2)g ′(b (L−2)) +δ(L )w (L ,L−2)g ′(b (L−2)) . (7.6)

Iterating once more yields three terms for δ(L−3):

δ(L−3) =δ(L )w (L ,L−1)g ′(b (L−1))w (L−1,L−2)g ′(b (L−2))w (L−2,L−3)g ′(b (L−3)) (7.7)

+δ(L )w (L ,L−2)g ′(b (L−2))w (L−2,L−3)g ′(b (L−3))

+δ(L )w (L ,L−1)g ′(b (L−1))w (L−1,L−3)g ′(b (L−3)) .
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Figure 7.2: Vanishing-gradient problem for the network shown in Figure 7.9 with
activation functions g (b ) = tanh(b ). (a) Root-mean-square error δ(`)rms in layer `
as a function of the number of training epochs. The weights were initialised as
independent Gaussian random numbers with mean zero and varianceσ2

w = 0.1/N
with N = 5. (b) Same, but for σ2

w = 1/N . Schematic, after simulations results
obtained by Ludvig Storm. Exercise 7.3.

Each term in this expression corresponds to one of all possible paths from L to L−3,

L→ (`1 = L −1)→ (`2 = L −2)→ L −3 , (7.8)

L→ (`1 = L −2)→ L −3 ,

L→ (`1 = L −1)→ L −3 .

The first path visits n = 2 intermediate neurons, it has no skipping connections. The
other two paths have one skipping connection each. They visit only one intermedi-
ate neuron. There are no paths that involve two or more skipping connections.
We conclude that the error δ(L−3) can be written as a sum over all paths, as stated
in Equation (7.34). The general form of Equation (7.34) is obtained by iterating
backwards using Equation (7.5).

Answer ( 7.5) — We start with Equation (7.38):

H =−
∑

iµ

t (µ)i log O (µ)
i . (7.9)

First show that H = 0 when O (µ)
i = t (µ)i . This follows because t (µ)i = 0, 1 and z log z = 0

for z = 0 and z = 1. Second, since 0≤O (µ)
i ≤ 1, we conclude that log O (µ)

i ≤ 0. This

means that H ≥ 0. Therefore H assumes a global minimum at O (µ)
i = t (µ)i .
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Answer ( 7.6) — Instead of (7.44), we use the energy function

H =−
∑

iµ

�

1+t
(µ)
i

2 log
�

1+O
(µ)
i

2

�

+ 1−t
(µ)
i

2 log
�

1−O
(µ)
i

2

��

, (7.10)

where O (µ)
i = tanh(b (µ)i ) and t (µ)i =±1. See also Eq. (5.52) in Ref. [1]. First, show that

H = 0 when O (µ)
i = t (µ)i . This follows because z log z = 0 for z = 0 and z = 1. Second,

show that H cannot be negative. Using the inequality − log z ≥−(z −1), we have

H ≥−
∑

iµ

�

1+t
(µ)
i

2
O
(µ)
i −1

2 + 1−t
(µ)
i

2
−1−O

(µ)
i

2

�

=−
∑

iµ

t
(µ)
i O

(µ)
i −1
2 =

∑

iµ

1−t
(µ)
i O

(µ)
i

2 . (7.11)

Now note that −1 ≤ O (µ)
i ≤ 1 and t (µ)i = ±1. This implies that 1− t (µ)i O (µ)

i ≥ 0, and
therefore H ≥ 0.

Answer ( 7.7) — To simplify the notation, leave out the superscript L . The derivative
of H w.r.t. wmn evaluates to

∂H

∂ wmn
=−

∑

iµ

t (µ)i

O (µ)
i

∂ O (µ)
i

∂ wmn
. (7.12)

The derivative of the output is evaluated using Equation (7.36) with α= 1:

∂ O (µ)
i

∂ bl
=δi l O (µ)

i −
ebi ebl

�

∑

j eb j

�2 =O (µ)
i (δi l −O (µ)

l ) . (7.13)

Now
∂ O (µ)

i

∂ wmn
=
∑

l

∂ O (µ)
i

∂ bl

∂ bl

∂ wmn
. (7.14)

Using bl =
∑

k wl k Vk −θl , we have ∂ bl /∂ wmn =δl m Vn , and therefore:

∂ O (µ)
i

∂ wmn
=O (µ)

i (δi m −O (µ)
m )V

(µ)
n . (7.15)

Inserting this into Equation (7.12) yields

δwmn =−η
∂H

∂ wmn
=η

∑

iµ

t (µ)i (δi m −O (µ)
m )V

(µ)
n . (7.16)

This becomes Equation (7.42) because the targets sum to unity,
∑

i t (µ)i = 1.



60 SOLUTIONS FOR EXERCISES IN CHAPTER 7

Figure 7.3: Input space and network layout for the three-dimensional exclusive
XOR problem. Exercise 7.8.

Answer ( 7.8) — The input-space representation of the three-dimensional gener-
alised XOR function is shown in Figure 7.3. The problem is not linearly separable. A
network that solves this classification problem is shown on the right of Figure 7.3.
Contrast this with Figure 5.11. In Figure 7.3, there is an additional hidden neuron
connected to the three inputs. It outputs 1 if all inputs are 1. This output is fed into
a third XOR unit, to make sure that the function evaluates to zero if all three inputs
equal unity. The generalised XOR function with four inputs is represented in an
analogous way.
An alternative is to use winning neurons. The construction outlined in Section 7.1
requires 2N hidden neurons, so eight hidden neurons for N = 3, whereas the network
layout shown in Figure 7.3 has ten hidden neurons. For N = 4, this approach requires
12 hidden neurons, while the construction with winning neurons requires 16 hidden
neurons.
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Figure 8.1: Parameter values for the network described in Exercise 8.1.

8 Solutions for exercises in Chapter 8

Answer ( 8.1) — The roles of the different layers of the network shown in Figure 8.13
are described in Sections 8.1 and 8.2.
The second part of the solution is summarised in Figure 8.1. The input dimensions
x1= 21, y1= 21, and z1= 3 are given in the question. To obtain the remaining
dimensions, note that the convolution layers have dimensions 20×20 for a 2×2
local receptive field with stride (1,1). So x2=y2= 20, and z2= 16. The pooling layer
has a 2×2 local receptive field with stride (2,2), so its dimensions are x3=y3= 10,
and z3= 16. The dimensions of the fully connected layer (y4= 20) and of the output
layer (y5= 10) are given in the question.
Finally, consider the number of trainable parameters. To count the number of
trainable parameters for the convolution layer, we start from Equation (8.3). There,
P = 2 and Q = 2 are the dimensions of the local receptive field, and R = 3 is the
number of colour channels. Since there are 16 kernels, the number of weights wp q r k

is 2×2×3×16= 192. In addition there are 16 thresholds θk . The number of weights
in the fully connected layer is 10× 10× 16× 20 = 32000, plus 20 thresholds. The
output layer has 20×10= 200 weights and 10 thresholds. So the total number of
trainable parameters is 208+32020+210= 32438.

Answer ( 8.2) — The answer is summarised in Sections 8.1 and 8.2.
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Answer ( 8.3) — Applying the kernel shown in Figure 8.14(b) to the digits in Fig-
ure 8.14(a) yields the following states of the hidden neurons:











2 2 2
2 3 3
3 2 2
3 2 2
3 2 1











,











3 2 2
3 3 3
4 2 3
3 3 3
3 2 2











(8.1)

(left for input ‘2’, right for input ‘8’). The pooling layer maps these states into




3
3
3



 ,





4
4
4



 . (8.2)

Now we need a 2×3 weight matrixW and a threshold vector θ = [θ1,θ2]T to distin-
guish these two states. One possibility is

W=
�

1 1 1
−1 −1 −1

�

, θ =

�

10
−10

�

. (8.3)

For input ‘2’, this gives

�

1 1 1
−1 −1 −1

�





3
3
3



−
�

10
−10

�

=

�

−1
1

�

. (8.4)

For input ‘8’one finds:

�

1 1 1
−1 −1 −1

�





4
4
4



−
�

10
−10

�

=

�

2
−2

�

. (8.5)

The first output component is positive for input ‘8’, while the second output compo-
nent is positive for input ‘2’. We conclude that the network manages to distinguish
the two inputs.

Answer ( 8.4) — The network layout used for this task is shown in Figure 8.2(a).
The network contains a total of 260458 trainable parameters. They are trained by
stochastic gradient descent using an adaptive learning rate with momentum1 as
described in Chapter 6.5. The initial learning rate was η= 0.01. A mini-batch size of
mB = 128 was used.

1For this solution the Adam optimiser was used. Kingma, D.P. & Ba, J., Adam: a method for
stochastic optimization, arXiv:1412.6980.
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Figure 8.2: (a) Layout of the convolutional network for Exercise 8.4. (b) Accuracy as
a function of the noise strength q . Also shown is the accuracy without noise (dashed
line), as a benchmark. Schematic, after numerical results obtained by Hampus
Linander. Exercise 8.4.

Figure 8.2(b) shows that noise reduces network performance, much more so for
‘black’ noise than ‘white’. Part of this asymmetry comes from the fact that the white
noise affects less pixels on average, since the background for the MNIST digits is
white (Figure 8.5).

However, if one compares accuracy for similar numbers of changed pixels, there is
still a significant difference (not shown), possibly because the black noise introduces
black pixels in the border region, which may confuse the network.

Answer ( 8.5) — Figure 8.3 shows the validation accuracy for two neural networks,
trained on the CIFAR-10 data set. The multi-layer perceptron has two hidden layers
with 105 neurons each, and an output layer with 10 softmax units (in total this
network has 334855 parameters). The convolutional network has two convolutional
layers with 32 3×3 kernels, a fully connected layer, and a softmax-output layer with
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Figure 8.3: Validation accuracy for the CIFAR-10 data set [132] for a multi-layer
perceptron (MLP, •) with two hidden layers with 105 neurons each, and a softmax-
output layer with 10 units, and for a convolutional network (CNN, Î) with two
convolutional layers with 3×3 kernels and a fully connected softmax-output layer
with 10 units. All hidden neurons have ReLU activation functions. Schematic, after
numerical results obtained by Hampus Linander. Exercise 8.5.

10 units (337834 trainable parameters). Both networks were trained on CIFAR-10
using adaptive learning rate with momentum2 without any regularisation, using
learning rate η= 0.001 and mini-batch size mB = 128.3

Without regularisation, the convolutional network overfits after around five epochs
of training. Still, the convolutional network has a validation accuracy that is approx-
imately 10% higher than the multi-layer perceptron.

Answer ( 8.6) — One possibility is to use the kernels

�

1 1
−1 −1

�

,

�

−1 −1
1 1

�

,

�

1 −1
1 −1

�

, and

�

−1 1
−1 1

�

. (8.6)

with ReLU neurons. Assume zero thresholds, unit stride, and zero padding. Feature-
map outputs for the first two kernels are shown in Figure 8.4. Note that the bits of
bar-and-stripe patterns have the values±1 (Figure 4.4). For stripe patterns, applying
2×2-pooling gives V 1 = [4,4,0,4,0,4]T for the first kernel, and V 2 = [0,4,4,0,4,4]T

for the second one. For bar patterns one finds V 1 = V 2 = [0,0,0,0,0,0]T. For the

2For this solution the Adam optimiser (without weight decay) was used. Kingma, D.P. & Ba, J.,
Adam: a method for stochastic optimization, arXiv:1412.6980.

3These values of η and mB were chosen by trial and error, compromising between reasonable
training times and accuracy.
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Figure 8.4: Result of applying the first two kernels in Equation (8.6) to bar and to
stripe patterns, using ReLU activation functions (1.8). Exercise 8.6.

other two kernels, V 1 and V 3 are exchanged, and so are V 2 and V 4. The following
output layer gives +1 for stripes and −1 for bars, O = sgn(V1+V2−V3−V4).

Answer ( 8.7) — Starting from a trained convolutional model (same as network ar-
chitecture and training parameters as in Exercise 8.5), the feature map in convolution
layer ` is extracted as V (`)

i j k (x ) for an input image x . Starting with a uniform random
input x of size 32×32×3 (the CIFAR RGB-image tensor size), stochastic gradient
ascent is used to maximize the average activation V (`)

k (x ) =
∑

i j V (`)
i j k (x )with respect

to the input x . Since this optimisation procedure does not know about the limits of
pixel values (e.g. [0, 1] or [0, 255]), it is necessary to clip the components of the new
x after each step.
Using an initial learning rate of η= 0.01 and performing 500 steps of gradient ascent
using the Adam optimiser4, the process is repeated for different choices of layer `
and feature map k . A similar procedure is used to maximise a certain component
of the softmax-output layer.
Figure 8.5 shows the results of this procedure. Panel (a) shows the optimised input

4Kingma, D.P. & Ba, J., Adam: a method for stochastic optimization, arXiv:1412.6980.
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Figure 8.5: Input images maximising activations in different layers of the trained
network shown in Figure 8.2(a), for feature map k = 5 in layer `= 1 [panel (a)], for
k = 5 and `= 2 [panel (b)], and for the 9:th softmax output [panel (c)]. Numerical
results obtained by Hampus Linander. Exercise 8.7.

for feature map k = 5 of the first convolution layer. We see that this feature map
looks for straight patterns in the top-left to bottom-right direction. Panel (b) shows
the optimised input for feature map k = 5 of the second convolution layer. This
feature map looks for patterns with varying orientations. We see that second con-
volution layer can utilise features found in the first layer to build more expressive
representations (varying orientations in this case). Panel (c) shows an image that
maximises the output for the 9:th softmax-output layer, corresponding to the class
ship of CIFAR-10. Even though this image does not look like a ship at all, it is still
classified as such by this network (see Section 8.6 and Refs. [5,128]).
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Figure 9.1: Multi-layer feedforward network obtained by removing the feedback
connection in Figure 9.1. Exercise 9.1.

9 Solutions for exercises in Chapter 9

Answer ( 9.1) — We use gradient descent on the energy function (9.4) to derive the
learning rule for w (v x )

mn ,

δw (v x )
mn =−η

∂H

∂ w (v x )
mn

=η
∑

k

E ∗k
∂ V ∗

k

∂ w (v x )
mn

. (9.1)

To evaluate the derivative of V ∗
k , we use Equation (9.6):

∂ V ∗
k

∂ w (v x )
mn

= g ′(b ∗k )
�

δk m xn +
∑

j

w (v v )
k j

∂ V ∗
j

∂ w (v x )
mn

�

. (9.2)

The only difference to Equation (9.8) is that we have xn instead of V ∗
n in the first

term on the right. So the learning rule for w (v x )
mn is obtained from Equation (9.14)

upon replacing V ∗
n by xn . This gives Equation (9.15).

For the second part, consider the network shown in Figure 9.1. It is very similar to
Figure 9.1 except that there is no feedback connection in Figure 9.1. The goal is to
show that the recurrent backprogation rule (9.13)

∆∗m = g ′(b ∗m )
∑

k

E ∗k [L
−1]k m , (9.3)

simplifies to Equations (6.6) and (6.8). The matrix L in Equation (9.3) has entries
L i j = δi j − g ′(b ∗i )w

(v v )
i j [Equation (9.9)], and the errors are E ∗k = yk −V ∗

k for k = 3,4
(and equal to zero otherwise). Writing out the matrix L for the network shown in
Figure 9.1, we find

L=







1
1

−g ′(b ∗3 )w31 −g ′(b ∗3 )w32 1
−g ′(b ∗4 )w41 −g ′(b ∗4 )w42 1






. (9.4)
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The inverse of L is

L−1 =







1
1

g ′(b ∗3 )w31 g ′(b ∗3 )w32 1
g ′(b ∗4 )w41 g ′(b ∗4 )w42 1






(9.5)

(this can be checked by matrix multiplication). Inserting L−1 into Equation (9.3), we
find

[∆∗]T = [0, 0, E ∗3 , E ∗4 ]







g ′(b ∗1 )
g ′(b ∗2 )

g ′(b ∗3 )w31g ′(b ∗1 ) g ′(b ∗3 )w32g ′(b ∗2 ) g ′(b ∗3 )
g ′(b ∗4 )w41g ′(b ∗1 ) g ′(b ∗4 )w42g ′(b ∗2 ) g ′(b ∗4 )






. (9.6)

Substituting this result into Equation (9.14) yields

δw (v v )
3n =η(y3−V ∗

3 )g
′(b ∗3 )V

∗
n and δw (v v )

4n =η(y4−V ∗
4 )g

′(b ∗3 )V
∗

n (9.7)

for the output weights. In this formula, the index n takes the values 1 and 2 (corre-
sponding to the two hidden neurons). Equation (9.7) is the update rule (6.6) for the
output weights, derived in Section 6.1.
In a similar fashion one obtains learning rules for the hidden weights in the feed-
forward network shown in Figure 9.1. Substituting Equation (9.6) into (9.15) yields

δw (v x )
1n =η

∑

i=3,4

(yi −V ∗
i )g

′(b ∗i )w
(v v )
i 1 g ′(b ∗1 )xn , (9.8a)

δw (v x )
2n =η

∑

i=3,4

(yi −V ∗
i )g

′(b ∗i )w
(v v )
i 2 g ′(b ∗2 )xn (9.8b)

for the hidden weights. This is the update rule (6.9) for the hidden weights. Since
all eigenvalues of L are equal to unity, the discussion on p. 161 shows that the
steady state V ∗ is linearly stable. We conclude that the recurrent-backpropagation
algorithm reduces to backpropagation (Algorithm 4 in Chapter 6) for a multilayer
feed-forward network.

Answer ( 9.2) — The steady state V ∗ of Equation (9.3) is defined by dV ∗/dt = 0. This
means that the the r.h.s. of Equation (9.3) must evaluate to zero in the steady state.
This yields Equation (9.6),

V ∗
i = g

�∑

j

w (v v )
i j V ∗

j +
∑

k

w (v x )
i k xk −θ

(v )
i

�

. (9.9)
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The stability of V ∗ is determined by linearising the dynamics around V ∗, V (t ) =
V ∗+δV (t ). Expanding the r.h.s. of (9.3) in small |δV | yields τ d

dt δV =−LδV . The
matrix L is given by Equation (9.9). We conclude that the fixed point V ∗ is stable if
all eigenvalues of L are positive. If this is not the case, the steady state is a saddle
point and training fails. See also Exercise 2.10.

Answer ( 9.3) — We begin by deriving the learning rule (9.28):

δw (o v ) =−η
∂H

∂ w (o v )
=−η

∂

∂ w (o v )

1

2

∑

t

(yt −Ot )
2 =η

∑

t

Et g ′(Bt )Vt , (9.10)

using Equation (9.19b). The quantity Et g ′(Bt )≡∆t is an output error.
Now consider the learning rule (9.27). We find:

δw (v x ) =−η
∂H

∂ w (v x )
=−η

∂

∂ w (v x )

1

2

∑

t

(yt −Ot )
2 =η

∑

t

Et

∂ Ot

∂ w (v x )
. (9.11)

Evaluating the derivative of Ot , one finds:

∂ Ot

∂ w (v x )
=w (o v )g ′(Bt )

∂ Vt

∂ w (v x )
. (9.12)

Evaluating the derivative of Vt using Equation (19.a), one finds the recursion (9.26)

∂ Vt

∂ w (v x )
= g ′(bt )

�

xt +w (v v ) ∂ Vt−1

∂ w (v x )

�

. (9.13)

This is the same as (9.23), but with xt instead of Vt−1. Therefore the weight increment
δw (v x ) has the same form as Equation (9.25), but Vt−1 is replaced by xt . This yields
Equation (9.27).

Answer ( 9.4) — The network dynamics is given by Equations (9.19):

V (t ) = g (w (v v )V (t −1) +w (v x )x (t )−θ (v )) , (9.14a)

O (t ) = g (w (o v )V (t )−θ (o )) . (9.14b)

The learning rule for w (o v ) is derived from

δw (o v ) =−η
∂H

∂ w (o v )
, (9.15)

with energy function (9.20). Using the chain rule, we find:

δw (o v ) =η
T
∑

t=1

Et

∂ Ot

∂ w (o v )
. (9.16)
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Figure 9.2: Network from Figure 9.8 unfolded in time.

Using Equation (9.14b), we obtain the learning rule for w (o v ):

δw (o v ) =η
T
∑

t=1

Et g ′(Bt )Vt =η
T
∑

t=1

∆t Vt . (9.17)

Here Bt =w (o v )V (t )−θ (o ) and∆t = Et g ′(Bt ) [Equation (9.22)].

Answer ( 9.5) — The unfolded network is shown in Figure 9.2. The update rule for
the output is given by Equation (9.19b):

O (t ) = g
�

2
∑

j=1

w (o v )
j V (t )

j

�

, (9.18)

where V (t )
j is the output of the j :th hidden neuron at time t , and w (o v )

j are the output
weights. The update rule for the hidden neurons is given by Equation (9.19a). For
hidden neuron i = 1, for example, one has:

V (t )
1 = g

�

w (v x )
1 x (t )+w (v v )

12 V (t−1)
2 −θ (v )1

�

, (9.19)

where x (t ) is the input at time t , and w (v v )
i j are the hidden weights. Note that the

hidden neurons have no self connections in Figure 9.2, w (v v )
i i = 0.

We now derive the learning rules for the weights using the energy function

H =
1

2

T
∑

t=1

[E (t )]2, E (t ) = y (t )−O (t ) , (9.20)

where y (t ) is the target value at time t . We start with the output weights. The
gradient-descent learning rule reads:

δw (o v )
m =−η

∂H

∂ w (o v )
m

=η
T
∑

t=1

E (t )
∂ Ot

∂ w (o v )
m

=η
T
∑

t=1

E (t )g ′(B (t ))
2
∑

j=1

δ j m V (t )
j . (9.21)
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Here, B (t ) =
∑2

j=1 w (o v )
j V (t )

j − θ (o ) is the local field of the output neuron at time t .
Evaluating the sum over j , we find:

δw (o v )
m =η

T
∑

t=1

E (t )g ′(B (t ))V (t )
m =η

T
∑

t=1

∆(t )V (t )
m , (9.22)

where∆(t ) = E (t )g ′(B (t )).

Now consider the learning rule for the hidden weights w (v v )
mn :

δw (v v )
mn =−η

∂H

∂ w (v v )
mn

=η
T
∑

t=1

E (t )
∂ O (t )

∂ w (v v )
mn

=η
T
∑

t=1

∆(t )
�

w (o v )
1

∂ V (t )
1

∂ w (v v )
mn

+w (o v )
2

∂ V (t )
2

∂ w (v v )
mn

�

. (9.23)

The next step is to derive a recursion formula for ∂ V (t )
j /∂ w (v v )

mn :

∂ V (t )
j

∂ w (v v )
mn

= g ′(b (t )j )
∂

∂ w (v v )
mn

�

∑

k

w (v v )
j k V (t−1)

k +
∑

l

w (v x )
j l x (t )l

�

= g ′(b (t )j )

�

δ j m V (t−1)
n +

∑

k

w (v v )
j k

∂ V (t−1)
k

∂ w (v v )
mn

�

. (9.24)

Here b (t )i =w (v x )
i x (t )+

∑2
j=1 w (v v )

i j V (t−1)
j −θ (v )i is the local field of V (t )

i . We iterate this
recursion from t = 1 to see whether any pattern emerges. The first iteration yields:

∂ V (1)
j

∂ w (v v )
mn

= g ′(b (1)j )δ j m V (0)
n . (9.25)
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Here we used ∂ V (0)
i /∂ w (v v )

mn ≡ 0. Iterating, we find:

∂ V (2)
j

∂ w (v v )
mn

= g ′(b (2)j )δ j m V (1)
n + g ′(b (2)j )w

(v v )
j m g ′(b (1)m )V

(0)
n , (9.26a)

∂ V (3)
j

∂ w (v v )
mn

= g ′(b (3)j )δ j m V (2)
n + g ′(b (3)j )w

(v v )
j m g ′(b (2)m )V

(1)
n (9.26b)

+ g ′(b (3)j )
∑

k

w (v v )
j k g ′(b (2)k )w

(v v )
k m g ′(b (1)m )V

(0)
n ,

∂ V (4)
j

∂ w (v v )
mn

= g ′(b (4)j )δ j m V (3)
n + g ′(b (4)j )w

(v v )
j m g ′(b (3)m )V

(2)
n (9.26c)

+ g ′(b (4)j )
∑

k

w (v v )
j k g ′(b (3)k )w

(v v )
k m g ′(b (2)m )V

(1)
n

+ g ′(b (4)j )
∑

k

w (v v )
j k g ′(b (3)k )

∑

l

w (v v )
k l g ′(b (2)l )w

(v v )
l m g ′(b (1)m )V

(0)
n ,

and so forth. In the sum over t in Equation (9.23), we regroup the terms as described
on page 164. We start from

∂H

∂ w (v v )
mn

=−
∑

j

w (o v )
j

�

∆(1)
∂ V (1)

j

∂ w (v v )
mn

+∆(2)
∂ V (2)

j

∂ w (v v )
mn

+∆(3)
∂ V (3)

j

∂ w (v v )
mn

+ . . .

�

, (9.27)

and collect terms multiplied by V (T−1)
n , V (T−2)

n , V (T−3)
n , . . .:

δw (v v )
mn =η

�

w (o v )
m ∆(T )g ′(b (T )m )V

(T−1)
n (9.28)

+
�

w (o v )
m ∆(T−1)g ′(b (T−1)

m ) +
∑

j

w (o v )
j ∆(T )g ′(b (T )j )w

(v v )
j m g ′(b (T−1)

m )
�

V (T−2)
n

+
�

w (o v )
m ∆(T−2)g ′(b (T−2)

m ) +
∑

j

[w (o v )
j ∆(T−1)g ′(b (T−1)

j )w (v v )
j m g ′(b (T−2)

m )

+
∑

j

w (o v )
j ∆(T )g ′(b (T )j )

∑

k

w (v v )
j k g ′(b (T−1)

k )w (v v )
k m g ′(b (T−2)

m )
�

V (T−3)
n

+ . . .

�

.

This learning rule can be written recursively as Equation (9.29).
A similar recursion holds for the errors in the learning rule for the input weights
w (v x )

mn . The only difference is that V (t−1)
n is replaced by x (t )n .
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Finally, consider the specific case of updating the weights leading to hidden neuron
j = 1 (note that there are no self connections in Figure 9.2, so the diagonal weights
vanish, w (v v )

i i = 0). We find:

δ(t )1 =

¨

∆(T )w (o v )
1 g ′(b (T )1 ) for t = T ,

∆(T )w (o v )
1 g ′(b (t )1 ) +δ

(t+1)
2 w (v v )

21 g ′(b (t )1 ) for 0< t < T ,
(9.29a)

and

δ(t )2 =

¨

∆(T )w (o v )
2 g ′(b (T )2 ) for t = T ,

∆(T )w (o v )
2 g ′(b (t )2 ) +δ

(t+1)
1 w (v v )

12 g ′(b (t )2 ) for 0< t < T .
(9.29b)

For 0< t < T , the current error δ(2)1 only depends only on δ(t+1)
2 , and vice versa. This

follows from the fact that there are no self connections. The recursions (9.29) can be
written as two-step recursions. For δ(t )1 , for example, we use that that for t < T −1,
δ(t+1)

2 depends on δ(t+2)
1 . This gives the following recursion for δ(t )1 :

δ(t )1 =



















∆(T )w (o v )
1 g ′(b (T )1 ) for t = T ,

∆(T−1)w (o v )
1 g ′(b (T−1)

1 ) +∆(T )w (o v )
2 g ′(b (T )2 )w

(v v )
21 g ′(b (T−1)

1 ) for t = T −1,

∆(t )w (o v )
1 g ′(b (t )1 ) +

�

∆(t+1)w (o v )
2 g ′(b (t+1)

2 )

+δ(t+2)
1 w (v v )

12 g ′(b (t+1)
2 )

�

w (v v )
21 g ′(b (t )1 ) for 0< t < T −1.

A corresponding two-step recursion forδ(t )2 can be obtained. While the more general
recursion relation (9.29) is easier to implement, the somewhat more complicated
recursion (9.30) reveals the temporal structure of the network: an error takes two
steps to return.

Answer ( 9.6) — The learning rules for the thresholds summarised in Algorithm 7
follow from the learning rules for the weights. Looking at the network dynamics
(9.19), we see that derivatives w.r.t. the thresholds θ (v )i and θ (o )i are obtained from
derivatives w.r.t. to the corresponding weights w (v v )

mn and w (o v )
mn by setting Vn (t −1)

[or Vn (t )] to −1. This implies

δθ (v )m =−η
T
∑

t=1

δm (t ) and δθ (o )m =−η
T
∑

t=1

∆m (t ) . (9.30)

Answer ( 9.7) — The proof is given by Hertz, Krogh & Palmer [1]. The steps are as
follows. The steady state ∆∗ of (9.16) is obtained by setting the r.h.s. of Equation
(9.16) to zero. This gives

Y ∗j −
∑

k

Y ∗k g ′(b ∗k )]w
(v v )
k j = E ∗j , (9.31)
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with Y ∗j =∆
∗
j/g

′(b ∗j ). We want to show that this is consistent with Equation (9.13),
which is equivalent to

∑

k

Y ∗k Lk j = E ∗j . (9.32)

According to Equation (9.9), L=δk j − g ′(b ∗k )w
(v v )
k j . This shows that (9.31) and (9.32)

are equivalent.

Answer ( 9.8) — Consider firstA1. It is a symmetric matrix, so it has real eigenvalues,
ν1,2 =

1
2 (3±

p
17). The singular valuesΛα ofA1 are the square roots of the eigenvalues

σα of AT1A1. Since A1 is symmetric, we haveσα = ν2
α, and thus Λα = να.

The matrix A2 has complex eigenvalues, να = 1± i. Its singular values equal Λα =p
2= |να|. So the singular values equal the absolute values of the eigenvalues. This is

generally true for normal matrices for whichATA=AAT. The matrixA2 is normal:

AT2A2 =

�

2 0
0 2

�

=A2AT2 . (9.33)

The matrix A3 is not normal. Its eigenvalues are ν1 = 2 and ν2 = 1, and its singular
values are Λα =

1
2 (
p

13±
p

5). This illustrates that singular values are different from
the eigenvalues, in general.
Finally consider the singular values of B(t ) =At for large integer t . We express B(t )
in terms of its left and right eigenvectors,1 B(t ) =

∑

αν
t
αR αL

T

α . Here L
T

denotes the

Hermitian transpose of L . One finds B(t )TB(t ) =
∑

α,β ν
t
αν

t
βLα(R

T

αR α)Lα. At large
times, only one term in the double sum survives, corresponding to the eigenvalue
ν1 with largest modulus |ν1|. This means that the maximal singular value of B(t )
converges to |ν1|t = exp(t log |ν1|).

Answer ( 9.9) — The Ikeda map is chaotic because it has a positive maximal Lya-
punov exponent λ(Ikeda)

1 [151]. It is difficult to predict the Ikeda time series for much
longer than 1/λ(Ikeda)

1 . For the parameters specified in the question, λ(Ikeda)
1 ≈ 0.24.

Figure 9.3 shows a time series x1(t ) generated using the Ikeda map (solid line), and
the prediction obtained using a reservoir computer (dashed line). We see that the
reservoir computer manages to predict the time series up to λ(Ikeda)

1 t ≈ 5.
The reservoir computer was set up as follows. The reservoir containedN = 500
neurons. Its weights were sampled from a normal distribution with mean zero and
varianceN σ2

w = 1. There was one input, x (t ). The input weights w (in)
i were sampled

from a normal distribution with mean zero and varianceσ2
in = 1. The reservoir states

were initialised to zero ri (0) = 0, and the reservoir dynamics (9.34a) was iterated
using the second component x2(t ) of the Ikeda time series as the input x (t ). The

1Chalker & Mehlig, Phys. Rev. Lett. 81 (1998) 3367, and references cited in this paper.
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Figure 9.3: Time series generated using the Ikeda map (9.34), solid line. Prediction
of the time series using a reservoir computer, dashed line. The maximal Lyapunov
exponent of the Ikeda map is denoted by λ(Ikeda)

1 . Schematic, after numerical results
obtained by Ludvig Storm. Exercise 9.9.

first 100 iterations were discarded. From the next T iterations, the energy function
is computed. Using Equation (9.35b), it can be written as

H = 1
2

T−1
∑

t=0

[y (t )−O (t )]2 = 1
2



y −RTw (out)




2
(9.34)

For time-series prediction, the target y (t ) equals the input x (t ). Furthermore,
R = [r (0), . . . , r (T −1)], and y = [x (0), . . . , x (T − 1)]T. Minimising H is a regression
problem to determine the parameters w (out). It was solved with ridge regression2

with ridge parameter 0.001. Storm et al.3 discuss general rules for choosing the
parameters for successful reservoir computing.
After determining the outputs weights as described above, the reservoir computer
was used to predict the time series. To this end, the outputs were fed into the inputs.
This corresponds to replacing x (t ) in Equation (9.35a) by O (t ) (there is no index k
because there is only one input component and one output neuron). Iterating the
reservoir dynamics once, one gets r (T ) from r (T −1), as well as the predicted value
O (T ) = w (out) · r (T ), using Equation (9.35b). Figure 9.3 was obtained by iterating
Equation (9.35a), always with x (t ) =O (t ) and fixed output weights w (out).

2See Section 1.5 of [W. N. van Wieringen, Lecture notes on ridge regression, arxiv:1509.09169].
3L. Storm, K. Gustavsson & B. Mehlig, Constraints on parameter choices for successful time-series

prediction with echo-state networks, MLST 3 (2022) 045021.



76 SOLUTIONS FOR EXERCISES IN CHAPTER 10

10 Solutions for exercises in Chapter 10

Answer ( 10.1) — Write q =αw and assume that w is a unit vector, so that α is the
length of q . Equation (10.4) implies

d
dt q = α̇w +α d

dt w =αAw . (10.1)

The norm of q changes as d
dt |q |2 = 2αα̇ = 2q ·Aq = 2α2w ·Aw , where we used

|w | = 1 for the first equality. We conclude that α̇ = α(w ·Aw ). Substituting this
into Equation (10.1) gives Equation (10.5). Note that Equation (10.5) describes the
dynamics of the normalised orientation vector of a small rod in turbulence,1 where
A(t ) is the matrix of fluid-velocity gradients.

Answer ( 10.2) — The data in Figure 10.4 has non-zero mean. Therefore the matrix
C′ defined in Equation (10.7) is different from the data-covariance matrix Cwith
elements

Ci j =
1

3

3
∑

µ=1

(xi −〈xi 〉)(x j −〈x j 〉) =
1

3

3
∑

µ=1

(xi − 2
3 )(x j − 2

3 ) . (10.2)

From Figure 10.4 we read off that

C=
1

9

�

2 −1
−1 2

�

(10.3)

This matrix has eigenvalues and eigenvectors

λ1 =
1
9 , u 1 =

1
p

2

�

1
1

�

, and λ2 =
1
3 , u 2 =

1
p

2

�

−1
1

�

(10.4)

We conclude that the principal direction is u 2.

Answer ( 10.3) — The solution to this exercise is explained in Section 10.1.

Answer ( 10.4) — We start at w = w 0 and iterate Equation (10.3). The result is a
sequence of updates w k =w k−1+δw k withδw k =η

�

Xk w k−1−(w k−1·X1w k−1)w k−1

�

,
with Xk = x (k )x (k )T. Expanding to linear order in η one finds

δw k =η
�

Xk w 0− (w 0 ·Xk w 0)w 0

�

. (10.5)

1Wilkinson, Bezuglyy & Mehlig, Phys. Fluids 21 (2009) 043304.
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Averaging gives

〈δw 〉=η
�

C′w 0− (w 0 ·C′w 0)w 0

�

. (10.6)

Now we can set w 0 =u α+ε0 and analyse how 〈δw 〉 depends on ε0. The conclusions
are the same as obtained in Section 10.1.

Answer ( 10.5) — The steady-state condition (10.6) implies

0=〈δwi0 j 〉=
�

� x j
∑

k xk
−w ∗

i0 j

��

. (10.7)

We conclude that

w ∗
i0
=

�

x j
∑

k xk

�

. (10.8)

Since xk = 0 or 1, it follows that the the elements of w ∗
i0

cannot be negative. Moreover,

∑

j

w ∗
i0 j =

∑

j

�

x j
∑

k xk

�

= 1 . (10.9)

Answer ( 10.6) — From a uniform distribution over the gray triangle in Figure 10.1,
2000 input points were independently sampled. The learning rule for a self-organising
map with neighbourhood function (10.18) with a 10×10 output array was iterated
for 2000 epochs (one epoch consists of feeding all 2000 input points). The algo-
rithm was run with an iteration-dependent learning rate, and also the width of the
neighbourhood function depended on the iteration number:

ηk =η0 exp(−k dη) , σk =σ0 exp(−k dσ) . (10.10)

Here the integer k counts the epochs, and η0 = 0.1, dη = 0.005,σ0 = 10, as well as
dσ = 0.005. The result is shown in Figure 10.1, see also Figure 10.9.

Answer ( 10.7) — A self-organising map with distance function (10.18) with dimen-
sion 50×1 was trained on the data described in the exercise for 50 epochs with an
initial learning rate of η0 = 0.1 with a decay rate of dη = 0.01, and an initial with
σ0 = 10 with a decay rate of dσ = 0.05 [see Equation (10.10)]. The result is shown
in Fig. 10.2. The solid line is the principal component, and the dashed line is the
principal manifold. To quantify the variance unexplained by the model, consider
the sum of squared residuals

SSR =
N
∑

i=1

�

yi − ŷi

�2
, (10.11)
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Figure 10.1: Convergence of self-organising map. (a) initial weights (•), (b) snapshot
of weights at an intermediate stage, (b) weights after 4×106 iterations. The network
of lines indicates the location of the corresponding neurons in the output array. The
data distribution is Pdata =A −1 inside the triangle and Pdata = 0 outside, andA is the
area of the triangle. Schematic, after numerical results obtained by Ludvig Storm.
Exercise 10.6.

Figure 10.2: Principal component and principal manifold fitted to data described
in Exercise 10.7. Shown is the principal component (gray dashed line) as well as the
principal manifold (solid gray line). Schematic, after numerical results obtained by
Ludvig Storm. Exercise 10.7.

where N = 50 is the number of data points, yi is the target value, and ŷi is the
model output. SSR equals 0.52 for the principal-component model, and 0.08 for the
principal-manifold model. The unexplained variance is, as expected, lower for the
principal manifold.

Answer ( 10.8) — Figure 10.3 shows the results of a self-organising map that maps
the iris data set to a 40 × 40 output array. Symbols denote the locations of the
winning neurons in the output array, colour-coded according to the classification of
the input patterns, as described in Section 10.3. The map was obtained by iterating
the learning rule (10.17) with neighbourhood function (10.18). The learning rate η
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Figure 10.3: Classification of Iris data set (Figure 5.1) using a self-organising map
with a 40×40 output array, and a perceptron with one hidden layer with two neurons
and and an output layer with three neurons. (a) Initial output the self-organising
map. Shown are the locations of the winning neurons in the output array. The
corresponding classes are indicated by symbols, iris setosa (•), iris versicolor (�),
and iris virginica (Î). (b) Final output of the self-organising map, and decision
boundaries of the hidden neurons of the perceptron (gray lines). Schematic, after
numerical results obtained by Ludvig Storm. Exercise 10.8.

and the widthσ of the neighbourhood function were reduced during the learning,

ηk =η0 exp(−k dη) , σk =σ0 exp(−k dσ) . (10.12)

Here k counts epochs, and η0 = 0.1, dη = 10−2,σ0 = 10, as well as dσ = 0.05. The
input data was preprocessed by dividing the components of the inputs by the largest
value of that component found in the data set. The weights of the output neurons
were initialised randomly, from a uniform distribution in [0,1]. The learning rule
was iterated for ten epochs.
We see that the self-organising map clusters the data into three distinct clusters in
the output array. This data can be classified using a perceptron with one hidden
layer with two sigmoid neurons, and an output layer with three sigmoid neurons
and targets t (µ)i = δiµ. The gray lines Figure 10.3 show the decision boundaries of
the hidden neurons.

Answer ( 10.9) — The source for this answer is Ref. [161]. The starting point is Equa-
tion (10.23):

0=

∫

dr 0|detJ|Q (r 0)h (r − r 0)
�

w ∗(r 0)−w ∗(r )
�

. (10.13)
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Now expand the integrand in δr = r − r 0 around r . Following the same steps as
outlined in Section 10.3, one finds

∫

dδrδriδr j h (δr )
�

∂i w ∗∂ j (J Q ) + 1
2 J Q∂i∂ j w ∗

�

, (10.14)

with J = |detJ(r )|. Assuming that the neighbourhood function is isotropic
∫

dδrδriδr j h (δr ) =σ2δi j , (10.15)

Equation (10.14) is equivalent to

∂i w ∗
�

∂iQ

Q
+
∂i J

J

�

=− 1
2∂

2
i w ∗ . (10.16)

First, if the distribution Pdata factorises in a square domain, we assume that w ∗
1 (r1)

and w ∗
2 (r2). With this ansatz, and defining Ji ≡ ∂i w ∗

i , Equation (10.16) splits into two
conditions

∂1w ∗
1

�

∂1Q1

Q1
+
∂1 J1

J1

�

=− 1
2∂

2
1 w ∗

1 , ∂2w ∗
2

�

∂2Q2

Q2
+
∂2 J2

J2

�

=− 1
2∂

2
2 w ∗

2 , (10.17)

where Q =Q1Q2. Both Equations are equivalent to the one-dimensional Equation
(10.29). We conclude that % = |detJ|−1 ∝ P 3/2

data, just as in the one-dimensional
case discussed in Section 10.3. So in this case, too, the weight density % imitates
the data distribution Pdata, as anticipated by Kohonen [18]. But the weight density
does not equal the data distribution [161]. One may speculate that the difference
is a consequence of the difficulty of approximating the data distribution near its
boundaries, but there is no general proof.
There is a special case where the two distributions are equal, namely when w ∗ is
an analytic function of r = r1+ i r2 [161]. In this case the r.h.s. of Equation (10.16)
vanishes. As a consequence, it follows from Equation (10.16) that the distributions
are equal, subject to normalisation: % = |detJ|−1∝ Pdata.

Answer ( 10.10) — See Ref. [2]. Figure 10.4 shows the XOR problem in the x1-x2

plane (left), and in the u1-u2 plane. This mapping is obtained by evaluating the
radial basis functions given in the problem formulation

u (1) ≈
�

1
0.14

�

, u (2) ≈
�

0.37
0.37

�

, u (3) ≈
�

0.37
0.37

�

, u (4) ≈
�

0.14
1

�

. (10.18)

Note that x (2) and x (3) are mapped to the same point in the u1-u2-plane, so the
mapping is not one-to-one. The problem is linearly separable in this plane.
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Figure 10.4: Left: input plane for Exercise 10.10. Right: mapped problem in the
u1-u2-plane and corresponding decision boundary for Exercise 10.10. After Fig. 5.2
in Ref. [2].

Figure 10.5: Left: input plane for Exercise 10.11. Right: mapped problem in the u1-
u2-plane, weight vector W , and corresponding decision boundary for Exercise 10.11.

Answer ( 10.11) — Figure 10.5 shows that the problem given in Table 10.1 is not
linearly separable. Mapping input space as described in the problem, results in the
problem shown on the right of Figure 10.5. In the new coordinates, the problem is
linearly separable with W = [−1,−1]T and Θ =−1.

Answer ( 10.12) — Figure 10.6 shows the decision boundaries in the x1-x2-plane for
for radial basis-function networks with different numbers of radial basis functions.
The resulting classification accuracies are shown in Table 10.1. To obtain these
results, 1000 inputs were generated. Algorithm 10 was iterated for 100 steps with
learning rate η= 10−3. Figure 10.6(d) shows that the algorithm overfits for 100 radial
basis functions.



82 SOLUTIONS FOR EXERCISES IN CHAPTER 10

Figure 10.6: Decision boundaries (solid red lines) for Exercise 10.12, for different
numbers m of radial basis functions. The corresponding classification accuracies
are shown in Table 10.1. Schematic, after numerical results obtained by Ludvig
Storm. Exercise 10.12.

Table 10.1: Classification accuracy for Exercise 10.12 for different numbers of radial
basis functions. Numerical results obtained by Ludvig Storm.

m 5 10 20 100
Accuracy in % 90.6 93.1 95.6 98.6
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Figure 10.7: (a) Representation of the MNIST digits in the latent plane. (b) Examples
of input-output pairs. The inputs are in the top row, the corresponding outputs
in the bottom row. (c) Artificial digits generated by sampling points from a cluster
in latent space (here: top left corner), and then applying the decoder. Numerical
results obtained by Anshuman Dubey. Exercise 10.13.

Answer ( 10.13) — The result of training the autoencoder from Figure 10.18 on
the MNIST data set is shown in Figure 10.7. All neurons have sigmoid activations
[Equation (6.19a)]. The model was trained for 100 epochs with learning rate η= 0.1,
mini-batch size 128, using the Adam optimiser.2

Figure 10.7(a) demonstrates that the autoencoder creates a non-linear two-dimen-
sional representation of the MNIST digits, much like the self-organising map (Figure
10.11). Like the self-organising map, the autoencoder tends to confuse the digits
4 and 9, and to some extent also 3 and 8. Figure 10.7(b) gives examples for input-
output pairs. Panel (c) shows how to generate artificial digits: one samples a point
from a cluster latent space, for example from the upper left-hand corner. Applying
the decoder generates an artificial version of the digit 2, in this case.
This is precisely what variational autoencoders are designed to do (page 199). Nu-
merical simulations performed by A. Wenzel Wartenberg show that for roughly equal
numbers of trainable parameters, the variational autoencoder tends to achieve
better separation of the clusters in latent space, compared with the deterministic
autoencoder considered in this exercise.

2Kingma, D.P. & Ba, J., Adam: a method for stochastic optimization, arXiv:1412.6980.
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Answer ( 10.14) — This solution follows Ref. [164]. LetX be the N ×p matrix that
has pattern vectors as its columns, X = [x (1), . . . , x (p )]. For linear units with zero
thresholds, the energy function of the autoencoder shown in Figure 10.19 is

H = 1
2



X−WdWeX




2
(10.19)

HereWe is the 2×N weight matrix of the encoder that maps patterns to the latent
variables, z (µ) = Wex (µ), andWd is the N × 2 matrix of the decoder. The matrix
WdWeX has at most rank two. So minimising H corresponds to finding the best
rank-2 approximation X(2) =WdWeX to X. To determine X(2), consider the singular-
value decomposition of X,

X=USVT , (10.20)

where U is an N ×N orthogonal matrix, V is a p ×p orthogonal matrix, and S is an
N ×p diagonal matrix. Its diagonal elements are the singular values Λ1 ≥Λ2 ≥ · · · of
X. Then

X(2) =US(2)VT , (10.21)

where S(2) is obtained from S by setting all singular values to zero except the largest
two. Using Equations (10.20) and (10.21),X(2) =WdWeX implies thatWdWeUSVT =
US(2)VT. In other words,

WdWe =US(2)VTVS′UT , (10.22)

whereS′ is obtained fromSby taking the reciprocal of all non-zero diagonal elements.
Equation (10.22) implies

WdWe =U1(2)UT , (10.23)

where 1(2) is a diagonal matrix with entries equal to unity in the first two diagonal
elements, and zero for all other matrix elements. If we choose Wd = U1(2) and
We = 1(2)UT, then Z=WeX contains the coefficients of the data vectors along the
two principal components of the input data (Section 6.3). This can be seen as
follows. The two principal components are the two eigenvectors of the correlation
matrixC=XXT =US2UT [Equation (6.24)]with the largest eigenvalues. These are
the two first columns of U.
The derivation summarised above assumes zero thresholds. The corresponding
calculations for non-zero thresholds are a bit more involved. They are described in
Ref. [164].
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11 Solutions for exercises in Chapter 11

Answer ( 11.1) — The gradient of H ′ w.r.t. wmn evaluates to

∂H ′

∂ wmn
=
∑

iµ

(t (µ)i −〈y
(µ)

i 〉)
∂ 〈y (µ)i 〉
∂ wmn

. (11.1)

From Equation (3.7) we infer that 〈y (µ)i 〉 = tanh(βb (µ)i ). Using Equation (6.20), we
find

∂ 〈y (µ)i 〉
∂ wmn

=β (1−〈y (µ)i 〉
2)
∂ b (µ)i

∂ wmn
. (11.2)

The derivative of the local field is evaluated using b (µ)i =
∑

j wi j x (µ)j . It follows that

δw ′
mn ≡−η

∂H ′

∂ wmn
=η

∑

µ

(t (µ)m −〈y
(µ)

m 〉)β (1−〈y
(µ)

m 〉
2)x (µ)n . (11.3)

Comparing with the form of the learning rule stated in the Exercise, we find δ(µ)m =
(t (µ)m −〈y

(µ)
m 〉)β (1−〈y

(µ)
m 〉

2).
Now consider the average energy: 〈H 〉=

∑

iµ

�

1− t µ)i 〈y
(µ)

i 〉
�

. To average, we used that

t (µ)i =±1 and y (µ)i =±1. The gradient evaluates to

∂ 〈H 〉
∂ wmn

=−
∑

µ

t (µ)m β (1−〈y
(µ)

m 〉
2)x (µ)n . (11.4)

The change in 〈H 〉 under the learning rule (11.3) is given by
∑

mn
∂ 〈H 〉
∂ wmn

δw ′
mn . In-

serting Equations (11.3) and (11.4), we see that the resulting expression can be
positive. The reason is that the result contains a double sum over pattern indices.
As a consequence, different patterns can interfere to give a positive result.

Answer ( 11.2) — The calculation is described in Section 7.4 of Ref. [1]. In summary,
one starts from Equation (11.5) for the average immediate reward given an input x :

∂ 〈r 〉
∂ wmn

=
∑

y1=±1,...,yM=±1

〈r (x , y )P (y |x )〉reward =
∑

y1=±1,...,yM=±1

〈r (x , y )
∂

∂ wmn
P (y |x )〉reward . (11.5)

According to Equation (11.6),

P (y |x ) =
M
∏

i=1

¨

p (bi ) for yi = 1 ,

1−p (bi ) for yi =−1 ,
(11.6)
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Figure 11.1: Stochastic binary neuron with 0/1 outputs. The learning rule is the
same as in Exercise 4.2. Exercise 11.3.

with p (b ) = [1+exp(−2βb )]−1 and local field bi =
∑

j wi j x j . Now one evaluates the
derivative w.r.t. wmn using the product rule:

∂

∂ wmn
P (y |x ) =

∑

i

�

∏

k 6=i

¨

p (bk ) for yk = 1

1−p (bk ) for yk =−1

�¨

p ′(bi )δi m xn for yi = 1 ,

−p ′(bi )δi m xn for yi =−1 ,

(11.7)

=

�

∏

k 6=m

¨

p (bk ) for yk = 1

1−p (bk ) for yk =−1

�¨

p ′(bm )xn for ym = 1 ,

−p ′(bm )xn for ym =−1 ,

= P (y |x )xn

¨

p ′(bm )/p (bm ) for ym = 1 ,

−p ′(bm )/[1−p (bm )] for ym =−1 .
(11.8)

Now one makes use of the relations p ′/p =β (1− tanhβb ) and −p ′/(1−p ) =−β (1+
tanhβb ) to obtain

∂

∂ wmn
P (y |x ) = P (y |x )β [ym − tanh(βbm )]xn . (11.9)

Multiplication with r (x , y ) and averaging over the stochastic outputs y and over the
reward distribution gives Equation (11.7).

Answer ( 11.3) — Consider the binary stochastic neuron shown in Figure 11.1. The
learning rule for the weights wn is derived by maximising the average immediate
reward using gradient ascent. We start from Equation (11.5),

∂ 〈r 〉
∂ wn

=
∑

y=±1

〈r (x , y )P (y |x )〉reward =
∑

y=±1

〈r (x , y )
∂

∂ wn
P (y |x )〉reward , (11.10)

〈r (x , 1)
∂

∂ wn
p (b ) + r (x , 0)

∂

∂ wn
[1−p (b )] .



87

Using ∂ p (b )/∂ wn = p ′(b )xn as well as Equation (6.20) gives

∂ 〈r 〉
∂ wn

=
∑

y=±1

〈r (x , y )P (y |x )β [y −p (b )]〉reward xn . (11.11)

So the following learning rule increases the expected immediate reward,

δwn =αr [y −p (b )]xn , (11.12)

at least for small enough learning rate α. This is the analogue of Equation (11.9) for
0/1-neurons.

Answer ( 11.4) — The association task given in Table 11.1 cannot be solved using the
associative reward penalty algorithm [185]. But if one embeds the four patterns into
a four-dimensional input space – so that the patterns become linearly independent
– then the algorithm finds the optimal strategy. This is shown in Figure 11.2 for the
embedding

�

0
0

�

→







0
0
1
0






,

�

1
1

�

→







1
1
0
1






,

�

0
1

�

→







0
1
0
0






, and

�

1
0

�

→







1
0
0
0






. (11.13)

The weights were initialised randomly, from a uniform distribution in [0, 1].
Figure 11.2 demonstrates that the asymmetry parameterδ |Equation (11.10)] affects
the convergence. The algorithm converges to rmax = 0.6 [Equation (11.4)] for δ= 0.3.
For δ= 0.1, convergence is much slower. Simulations (not shown) indicate that the
algorithm fails for δ= 0.

Answer ( 11.5) — Figure 11.3 shows the reward obtained from Q -learning as a func-
tion of the number of training episodes for three different values of the parameter
ε defining the ε-greedy policy (page 208). When ε = 0, the action with the highest
Q -value for a given state is picked. As a consequence, the algorithm arrests in a
local reward maximum, so training fails. When ε > 0, the algorithm explores sub-
optimal state-action pairs that leads to higher rewards in the long run (exploitation-
exploration dilemma, page 206). The maximal expected reward rmax = 15 is shown
as a dashed line in Figure 11.3. We see that the algorithm converges to rmax for
ε = 0.01 and ε = 0.1, but convergence is faster for ε = 0.1.

Answer ( 11.6) — Figure 11.4(a) shows the decision tree for your opponent. We
want to use Q -learning to find the optimal strategy to compete against this player.
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Figure 11.2: Associative reward-penalty algorithm for the XOR problem. The dashed
line shows the maximal expected reward rmax = 0.6, computed from Table 11.1.
The solid line shows the reward as a function of the number of iterations of Equa-
tion (11.10), obtained after embedding the four patterns from Table 11.1, within
four-dimensional input space so that they become linearly independent. Param-
eters: δ = 0.1,0.3 and α = 0.1. Schematic, after data obtained by Navid Mousavi,
averaged over independent realisations. Exercise 11.4.

The question is how this strategy depends on p and q . Figure 11.4(b) shows your
average reward when you compete against this opponent. It is calculated as

〈R 〉=
1

kmax

kmax
∑

k=1

rk , (11.14)

where kmax is the total number of games played (number of episodes), and rk is the
reward received in game k . Each episode consists of only one iteration, a single
round of the game. In other words, T = 1. Therefore the Q -learning rule (11.24)
simplifies to (11.26).
The actions are to play rock, paper, or scissors. The states are listed in Table 11.1.
Each state contains the move of your opponent in the previous round, and whether
he won, drew, or lost that round. It is necessary to take into account the outcome
of the previous round because the decision tree of the opponent depends on this
outcome (Figure 11.4).
One finds that 〈R 〉= 1 when p = q = 0 [bottom left corner in Figure 11.4(b)], where
the opponent always plays rock. In this case, one learns to win all games by playing
paper all the time. When p = 0 and q = 1

3 , the opponent chooses rock, paper, scissors
with equal probabilities. There is nothing to learn in this case, we expect to receive
+1, 0, −1 with probability 1

2 . So the reward averages to zero in this corner, 〈R 〉= 0.
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Figure 11.3: Three-armed bandit problem. The dashed line shows the maximal
expected reward, rmax = 15. The thick solid lines show the reward distributions
from Figure 11.8. The thin solid lines show the expected reward versus the number
of learning episodes for three different values of ε defining the ε-greedy policy
(page 208). Schematic, using simulation results of Navid Mousavi. Exercise 11.5.

For p = 0, the opponent’s choice does not depend on history. If we average over
many games, your average reward evaluates to











0 for a = rock ,

1−3q for a = paper ,

3q −1 for a = scissors .

(11.15)

For 0≤ q < 1
3 , it is advantageous for you to play always paper. In this case Eq. (11.14)

evaluates to 〈R 〉= 1−3q .

When p > 0, the opponent’s choice depends on the outcome of the previous game.
As mentioned above, this is accounted for by defining the states to include your
opponent’s last move and whether he won, drew, or lost. Table 11.1 shows your
average reward for playing rock, paper, and scissors, following the decision tree
shown in Figure 11.4(a). Each row corresponds to different outcome of the previous
round, whether the opponent played rock, paper, or scissors, and whether he won,
drew, or lost. For fixed p > 0, Table 11.1 shows that there are two critical values of q
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Figure 11.4: Rock-paper-scissors. (a) Decision tree of the opponent, as described
in the problem formulation. (b) Shows contour lines of the average reward (11.14)
as a function of p and q . Also shown are the critical values of the parameter q given
by Eq. (11.16), dashed lines. The numerical results were obtained by Navid Mousavi
using Q-learning, letting a player compete with an opponent acting as described in
the decision tree. Exercise 11.6.

where the optimal action changes for a given state:

q (c)1 =
3p −1

3(p −1)
and q (c)2 =

3p −2

6(p −1)
. (11.16)

The average reward (11.14) changes at these lines, as seen in Figure 11.4(b).

Answer ( 11.7) — Table 11.2 shows instructions for an ‘expert’ tic-tac-toe player
[191]. The left column contains an ordered list of actions. Crowley & Siegler state
that one should always take the action that is highest up in the table. The second
column shows an example for a configuration of the playing board that calls for the
action to the left.
The third column shows the result of Q learning, giving the Q -matrices for each
configuration. Comparing the result of the Q -learning algorithm with the rules
proposed by Crowley and Siegler, we see that the results are broadly consistent, the
Q element corresponding to the proposed action is the largest.
However, the Q -values quoted in Table 11.2 are not perfectly converged, although
the algorithm has converged to the optimal strategy. Examples are the very small
negative values in ‘play empty corner’. That those Q -values are negative means that
the player loses and receives reward −1. The Q -values do not equal −1 because the
algorithm explores unfavourable actions less frequently (exploitation-exploration
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Table 11.1: Your average reward for playing rock, paper, or scissors. The average
reward depends on the outcome of the previous game, whether your opponent
played rock, paper, or scissors, and whether he won, lost, or drew. Exercise 11.6.

〈R 〉rock 〈R 〉paper 〈R 〉scissors

rock won 0 1+ (p −1)3q (1−p )3q −1
paper won −p (1−p )(1−3q ) (1−p )(3q −1) +p
scissors won p (1−p )(1−3q )−p (1−p )(3q −1)
rock lost 0 (1−p )(1−3q )− p

2 (1−p )(3q −1) + p
2

paper lost p
2 (1−p )(1−3q ) (1−p )(3q −1)− p

2

scissors lost −p
2 (1−p )(1−3q ) + p

2 (1−p )(3q −1)
rock drew 0 (1−p )(1−3q ) (1−p )(3q −1)
paper drew 0 (1−p )(1−3q ) (1−p )(3q −1)
scissors drew 0 (1−p )(1−3q ) (1−p )(3q −1)

dilemma). Another example is ‘play center’. The player receives a small negative
reward when playing any other move, indicating that the player loses. But the
expected future reward does not equal −1.
Note that the example ‘play empty side’ in Table 11.2 does not convey any strategic
information. The purpose of the last four rows is to allow the player to make a move
if the first five choices are unavailable. However, the Q -learning algorithm did not
find any example for ‘play opposite corner’ that was not covered by the first five
rows in in Table 11.2.
Finally, Crowley & Siegler designed their rules to take advantage of a weaker player.
Therefore they suggest to ‘play center’ in the beginning of the game when the first
five rules do not apply. This increases the probability that a weaker opponent makes
an error (Newell & Herbert1 discuss a slightly different decision table, also designed
to increase the probability to win against a weaker player ). In our case, the Q -values
for the empty board are all equal zero,

o o o
o o o
o o o

, (11.17)

because any game between expert players must end in draw.

Answer ( 11.8) — Results for three different reward functions are plotted in Figure
11.5. Shown is how the probability for a game to end in a draw changes during
training, as a function of the number of rounds of the game played. The reward

1A. Newell & H. A. Simon, Human problem solving, Prentice-Hall, London (1972).
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Table 11.2: Table 1 from Ref. [191], summarising how to how to play tic-tac-toe as
successfully as possible. At each round, one should make the move that comes first
from the top. Also shown are board configurations for each of the moves, as well as
Q -tables obtained by Navid Mousavi using Q -learning. Exercise 11.7.

action board Q -table

Win (x)
x x -
- o -
o - -

— — 1
0.62 — 0.8
— 0.8 0.8

Block (o)
x - -
- o -
x - -

— -0.054 -0.002
0 — -0.084

— -0.066 -0.092

Fork (x)
x - -
o x -
- - o

— 1 1
— — 0.970

0.957 0.986 —

Block fork (o)
(get two in a row)

- x -
x - -
o - -

0.948 — 0.996
— 0.98 0.972
— 0.979 1

Block fork (o)
(can’t get two in a row)

o x -
x - -
- - -

— — -0.025
— 0 0

-0.029 0 -0.029

Play center (o)
x - -
- - -
- - -

— -0.002 -0.005
-0.027 0 -0.016
-0.012 -0.013 -0.034

Play opposite corner (o)
x - -
- o -
- x -

— -0.044 -0.014
0 — 0
0 — 0

Play empty corner (o)
- - -
- x -
- - -

0 -0.003 0
-0.004 — -0.005

0 -0.002 0

Play empty side (o)
x o x
x o -
o x o

— — —
— — 0
— — —
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Figure 11.5: Learning to play tic-tac-toe using Q -learning, for three different reward
functions, R1: r = 1 (win), r = 0 (draw), r =−1 (lose); R2: r = 2 (win), r = 0 (draw),
r = −1 (lose); R3: r = 1 (win), r = −1 (draw, lose). Initially ε = 1. During training,
the parameter ε was iteratively decreased, ε′ = 0.95ε after 100 epochs. All elements
of the Q -matrix were initialised to zero, the learning rate was α= 0.1. Schematic,
after simulation results obtained by Navid Mousavi, averaged over 20 independent
training runs. Exercise 11.8.

function R1 (see Figure caption) is the same as in Figure 11.7. The results for the
reward function R2 are very similar: for expert players, all games end in a draw.
The reward function R3 yields a different result, player 1 always wins. This is ex-
pected, because in this case the reward is the same for ‘draw’ or ‘lose’. Therefore
the second player cannot learn to prevent the first one from winning. Since the first
player has the advantage of placing the first piece, this player learns to always win.

Answer ( 11.9) — Section 11.3 describes how two players can learn to play tic-tac-
toe by means of the Q -learning algorithm. In the same way, two players can learn
to play connect four (Figure 11.9).
There are many more states to consider in connect four on a 6×6 playing field. The
latter allows for 336 board configurations, as opposed to 39 for tic-tac-toe. Note,
however, that not all board configurations are allowed states. For example, the
configuration

x x x
o o o
- - x

(11.18)

is never encountered. For tic-tac-toe, the algorithm visits around 2000 states for
each player.
For connect four, the number of states which Q -learning may encounter is much
larger, which can slow down the learning. Figure 10.7 shows how two players learn to
play connect four on a 6×6 board by competing against each other, using Q -learning.



94 SOLUTIONS FOR EXERCISES IN CHAPTER 11

Figure 11.6: Q -learning for the board game connect four on a 6× 6 playing field.
Initially ε = 1. During training, the parameter ε was iteratively decreased, as shown
by the dashed line. All elements of the Q -matrix were initialised to zero, the learning
rate was α = 0.1. The results shown were averaged using a moving average with
window size 5×105 epochs. Schematic, adapted from numerical results obtained
by Navid Mousavi. Exercise 11.9.

Compared with Q -learning for tic-tac-toe (Exercise 11.8), the parameter ε decreases
much more slowly, in order to allow the algorithm to explore the much larger state
space (counting the states visited, one finds that the algorithm saw 5×106 states
after 4× 106 epochs). We see that the game most often ends in a draw, but the
probability of obtaining a draw is smaller than unity. Ref. [196] says, by contrast,
that expert players always draw on a 6×6 board. The reason for this difference is that
the algorithm has not explored sufficiently many states, even though ε decreases
so slowly. The problem is that, as ε becomes small, the players explore only if they
receive a negative reward: by losing, one learns how to block the opponent or win
the game. Since most games end in a draw, exploration takes many epochs.
In summary, the algorithm should explore even more. However, the tabular Q -
learning as described in Section 11.3 becomes quite inefficient for this purpose, as
one needs a a large amount of memory to save all state-action pairs encountered.
In this case it may be more efficient to replace the Q -table with a Q -function and
use function approximators such as neural networks (Sections 11.2 and 11.4).
At any rate, it is proven in Ref. 196 that the game always ends in a draw for expert
players on a 6×6 board. The situation is different when the playing field has seven
columns instead of six. In this case, the first player can learn to always win if she
starts in the center column. If the first player begins in any other column instead,
then the second player can learn to force a draw [196].
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Answer ( 11.10) — The expected stock of chocolate at time t , 〈st 〉, obeys the recur-
sion:

〈st+1〉=

¨
�

〈st 〉+1
�

(1−p ) save

0 eat
(11.19)

The expected daily reward, 〈rt 〉, is given by 〈rt+1〉= 〈st 〉+1 if you save the chocolate,
but 〈rt+1〉 = 2(〈st 〉+ 1) when you eat it. Now consider the expected future reward
over a period of T days, 〈RT 〉 =

∑T
t=1〈rt 〉. Let us compare two strategies. The first

one is to eat the chocolate every day. In this case

〈RT 〉eat = 2T . (11.20)

The second strategy is to save the chocolate for T −1 days, and to eat what is left on
day T . The reward for this strategy is

〈RT 〉save =

� T−1
∑

t=1

〈st−1〉+1

�

+2
�

〈sT−1〉+1
�

. (11.21)

To evaluate this expression further, one needs the solution of the recursion (11.19):

〈st 〉=
1

p
(1−p )

�

1− (1−p )t
�

. (11.22)

Inserting this expression into Equation (11.21) yields

〈RT 〉save =
T

p
+

2p −1

p 2

�

1− (1−p )T
�

. (11.23)

Figure 11.7 shows 〈RT 〉save and 〈RT 〉eat as a function of p for T = 10. We conclude
that it is better to save if p < 1

2 . For p > 1
2 it is better to eat. It turns out that these are

the optimal strategies. Also shown are results of Q -learning. For p < 1
2 , the results

are slightly below 〈RT 〉save. The problem is that the learning algorithm converges
slowly when p approaches 1

2 from below. As p increases, the fluctuations of the
total reward increase: slightly below 1

2 , the reward for keeping is still higher than for
eating, but at the same time there is a high chance of losing all chocolate.
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Figure 11.7: Eat or save the chocolate? Expected reward obtained by by Q learning
for T = 10 days (•). The expected rewards for two strategies are also shown: to eat
the chocolate immediately (Equation (11.20), ‘eat’), and to wait and eat on the last
day (Equation (11.23), ‘save’). The optimal strategy changes for p = 1

2 (vertical line).
Schematic, after simulation results by Navid Mousavi. Exercise 11.10.
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