
Non-equilibrium stochastic processes part IIB

1. The velocity of a heavy particle with mass m in a solution fluctuates
due to random collisions. The conditional probability P (v, t) = P (v, t|v0, 0)
for the particle to have velocity v at time t provided that it has velocity v0
at time t = 0 satisfies the Fokker-Planck equation
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Determine the constant a so that the Maxwell-Boltzmann distribution is ob-
tained as an equilibrium distribution. Deduce from the Fokker-Planck equa-
tion the time-dependent moments 〈v(t)〉 and 〈v(t)2〉 with initial condition
v(t = 0) = v0.

2. Consider the branching and annihilation reaction

A
λ→ A+ A and A+ A

µ→ 0 . (2)

Write down the master equation for the probability ρ(n, t) of observing n
molecules at time t. Introduce the variable x = n/N (where N is a large
number of molecules) and derive an approximate equation for P (x, t) =
ρ(xN, t)N . Determine how the number of molecules µ(t) = 〈n〉 grows as
a function of t.

3. The master equation for the Poisson process reads

∂ρn
∂t

= q
(
E− − 1)ρn (3)

where E− = exp(−∂/∂n) and q is the rate at which events occur randomly.
Show how to obtain the Poisson distribution by means of a time-dependent
WKB approximation. Show also that one obtains a Gaussian approximation
to this distribution by expanding the WKB Hamiltonian to second order in
momentum p. Discuss how the Gaussian approximates the Poisson distribu-
tion, how it fails, and why.

4. Consider a symmetric random walk on a discrete one-dimensional lattice.
The corresponding master equation is:

∂P (j, t)

∂t
= [P (j − 1, t) + P (j + 1, t)− 2P (j, t)] . (4)

Here P (j, t) denotes the probability that the walker is at site j at time t.
The initial condition is P (j, 0) = δj,0. To solve this equation we can use a
generating function

F (z, t) =
∞∑

j=−∞
zjP (j, t) . (5)



Derive the equation for F (z, t) corresponding to the master equation. F (z, t)
can be inverted as follows
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∮
C

dzz−j−1F (z, t) (6)

where C is the unit circle around the origin. Let z = exp iθ and find an
expression for P (z, t) in terms of the modified Bessel function defined by

In(z) =
1

2π

∫ π

−π
dθez cos θe−inθ . (7)

5. Many problems in Biology depend on the arrival of some mobile species of
interest at the cell-surface where the species attaches to some receptor. We
idealise the cell as a sphere of radius R and consider the case where there
is a spherically symmetric distribution c(r) of molecules centred around the
cell, with boundary condition c(r →∞) = c0 . Compute the absorption rate
provided that all molecules are adsorbed by receptors on the cell surface.

6. Path coalescence. The equation

ẋ = v , v̇ = −γv + f(x, t) (8)

describes the damped motion of a particle in a fluctuating force f(x, t) (unit
mass, m = 1). We assume that f is Gaussian with zero mean, correlation
time τ , and correlation length `:

〈f〉 = 0 , 〈f(x1, t1)f(x2, t2)〉 = f 2
0 exp[−|t2 − t1|/τ − (x2 − x1)2/2`2] . (9)

Analyse the path-coalescence transition in the limit τ → 0 by deriving an
equation for the dynamics of small separations ∆x and small relative veloci-
ties ∆v. Derive an equation for the dynamics of z = ∆v/∆x and show that
the Lyapunov exponent can be computed as a steady-state expectation value
of z. Describe the dynamics of z in qualitative terms.

7. Brownian motors. Consider a Brownian motor, performing a random
walk along the x-axis. In a simple model the probability that the motor is
located on site n at time t satisfies the equation

∂P (n, t)

∂t
= kr[P (n− 1, t)− P (n, t)] + kl[P (n+ 1, t)− P (n, t)] (10)

where kr and kl are the rates for hopping to the left and to the right, respec-
tively. These rates differ due to internal processes such as chemical reactions
or conformational changes in the motor. Explain how a Brownian motor can
convert fluctuations into directed motion. By multiplying the equation with
n and n2 and summing over n from −∞ to∞ derive equations of motion for
〈n and 〈n2. Solve these equations and find the time dependence of the mean
µ(t) = 〈n〉 and the variance σ2(t) = 〈n2〉 − 〈n〉2.


