Non-equilibrium stochastic processes part II1B

1. The velocity of a heavy particle with mass m in a solution fluctuates
due to random collisions. The conditional probability P(v,t) = P(v,t|vg,0)
for the particle to have velocity v at time t provided that it has velocity vy
at time ¢t = 0 satisfies the Fokker-Planck equation
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Determine the constant a so that the Maxwell-Boltzmann distribution is ob-
tained as an equilibrium distribution. Deduce from the Fokker-Planck equa-
tion the time-dependent moments (v(t)) and (v(t)?) with initial condition
v(t =0) = .

2. Consider the branching and annihilation reaction
ADXA+A and A+A50. (2)

Write down the master equation for the probability p(n,t) of observing n
molecules at time ¢. Introduce the variable ©+ = n/N (where N is a large
number of molecules) and derive an approximate equation for P(x,t) =
p(xN,t)N. Determine how the number of molecules u(t) = (n) grows as
a function of ¢.

3. The master equation for the Poisson process reads
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where £~ = exp(—30/dn) and q is the rate at which events occur randomly.

Show how to obtain the Poisson distribution by means of a time-dependent
WKB approximation. Show also that one obtains a Gaussian approximation
to this distribution by expanding the WKB Hamiltonian to second order in
momentum p. Discuss how the Gaussian approximates the Poisson distribu-
tion, how it fails, and why.

4. Consider a symmetric random walk on a discrete one-dimensional lattice.
The corresponding master equation is:
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Here P(j,t) denotes the probability that the walker is at site j at time ¢.

The initial condition is P(j,0) = d,0. To solve this equation we can use a
generating function

=[P —-1Lt)+P(+1,t)—2P(j,t)]. (4)
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F(st)= Y #P(j1). (5)
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Derive the equation for F'(z,t) corresponding to the master equation. F'(z,t)
can be inverted as follows
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where C' is the unit circle around the origin. Let z = expif and find an
expression for P(z,t) in terms of the modified Bessel function defined by
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5. Many problems in Biology depend on the arrival of some mobile species of
interest at the cell-surface where the species attaches to some receptor. We
idealise the cell as a sphere of radius R and consider the case where there
is a spherically symmetric distribution ¢(r) of molecules centred around the
cell, with boundary condition ¢(r — 00) = ¢ . Compute the absorption rate
provided that all molecules are adsorbed by receptors on the cell surface.

6. Path coalescence. The equation
t=v, v=-yw+f(z1) (8)

describes the damped motion of a particle in a fluctuating force f(x,t) (unit
mass, m = 1). We assume that f is Gaussian with zero mean, correlation
time 7, and correlation length ¢:

(f) =0, (flar,t1) f(w,t2)) = f5 exp[—[ta — t:]/7 — (w2 — 21)*/20°] . (9)

Analyse the path-coalescence transition in the limit 7 — 0 by deriving an
equation for the dynamics of small separations Az and small relative veloci-
ties Av. Derive an equation for the dynamics of z = Av/Ax and show that
the Lyapunov exponent can be computed as a steady-state expectation value
of z. Describe the dynamics of z in qualitative terms.

7. Brownian motors. Consider a Brownian motor, performing a random
walk along the z-axis. In a simple model the probability that the motor is
located on site n at time ¢ satisfies the equation

OP(n,t)

e k. [P(n —1,t) — P(n,t)] + ky[P(n + 1,t) — P(n,t)] (10)

where k, and k; are the rates for hopping to the left and to the right, respec-
tively. These rates differ due to internal processes such as chemical reactions
or conformational changes in the motor. Explain how a Brownian motor can
convert fluctuations into directed motion. By multiplying the equation with
n and n? and summing over n from —oo to co derive equations of motion for
(n and (n?. Solve these equations and find the time dependence of the mean
u(t) = (n) and the variance o(t) = (n?) — (n)2.



