## Dynamical Systems

## Examples sheet 5

1. Path coalescence. This phenomenon is discussed in $[1,2]$. Consider $N$ independent random walkers, the position of the $j$ the walker at time $t$ is denoted by $x_{j}(t)$

$$
\begin{equation*}
x_{j}(t+\delta t)=x_{j}(t)+f_{l}\left(x_{j}(t)\right) \tag{1}
\end{equation*}
$$

where $t=l \delta t$ and $f_{l}(x)$ is taken to be a Gaussian random function with correlation length $\xi$

$$
\begin{equation*}
\left\langle f_{l}(x)\right\rangle=0, \quad\left\langle f_{l}(x) f_{l^{\prime}}\left(x^{\prime}\right)\right\rangle=\sigma^{2} \delta_{l l^{\prime}} \mathrm{e}^{-\left(x-x^{\prime}\right)^{2} / 2 \xi^{2}} \tag{2}
\end{equation*}
$$

In order to simulate the dynamics on a computer, assume that the $N$ walkers move on the unit interval with periodic boundary conditions. In this case, $f_{l}(x)$ can be constructed as follows

$$
\begin{equation*}
f_{l}(x)=\sigma \sqrt{\sqrt{2 \pi} \xi} \sum_{k} a_{k l} \mathrm{e}^{\mathrm{i} k x-\xi^{2} k^{2} / 4} \tag{3}
\end{equation*}
$$

where the sum is over wave vectors of the form $k=2 \pi n$ with $n=-\infty, \ldots, \infty$ and $a_{k l}$ are complex Gaussian random numbers with

$$
\begin{equation*}
\left\langle a_{k l}\right\rangle=0, \quad\left\langle a_{k l} a_{k^{\prime} l^{\prime}}^{*}\right\rangle=\delta_{k k^{\prime}} \delta_{l l^{\prime}} . \tag{4}
\end{equation*}
$$

In order for $f_{l}(x)$ to be real, one must require that $a_{k l}^{*}=a_{-k l}$. Here the asterisk denotes complex conjugation.
(i) Implement eq. (3) and show that for given values of $l$ and $x, f_{l}(x)$ is Gaussian distributed with zero average and variance $\sigma^{2}$.
(ii) Show that in the limit of small $\xi$ (choose $\xi=0.1$ for example), the correlation function of $f_{l}(x)$ is given by eq. (2).
(iii) Simulate the equation of motion (1) for $N=100$ particles. What happens? How does the behaviour of the trajectories depend of the parameter values $\sigma$ and $\xi$ ?
(iv) Locate the phase transition by calculating numerically the Lyapunov exponent. Plot your results in suitable dimensionless variables.
[1] J. Deutsch, J. Phys. A 18, 1449 (1985)
[2] M. Wilkinson and B. Mehlig, Phys. Rev. E 68, art. no. 040101 (2003)

