Chance and Chaos Examples sheet 2 To be handed in Monday May 24

Random matrices. Diagonalise $N \times N$ symmetric, real-valued random matrices \boldsymbol{H} . Take $H_{ij} = H_{ji}$ to be Gaussian-distributed random variables with zero mean and variance $\langle H_{ij}H_{kl}\rangle = N^{-1}(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})$.

(a) Calculate the density of states

$$d(E) = \left\langle \frac{1}{N} \sum_{\alpha=1}^{N} \delta(E - E_{\alpha}) \right\rangle$$

where E_{α} ($\alpha = 1, ..., N$) are the eigenvalues of \boldsymbol{H} , and $\langle \cdots \rangle$ is an average over realisations of random matrices. Check that the average spacing between neighbouring levels in the vicinity of E = 0 is given by $\Delta = 1/[Nd(0)]$. (b) Calculate the distribution of nearest-neighbour level spacings $s_{\alpha} = |E_{\alpha+1} - E_{\alpha}|/\Delta$. Take pairs of levels in the vicinity of E = 0.

(c) Calculate the so-called number variance of the spectrum. It is defined as follows. Unfold the spectrum in the vicinity of E = 0 by dividing the levels by Δ . After unfolding, the number n(L) of levels in an energy interval (around E = 0) of length L will be on average L. Calculate the variance

$$\Sigma_2(L) = \langle n^2(L) \rangle - L^2 \,.$$