Chance and Chaos

Examples sheet 2

To be handed in Monday May 24

Random matrices. Diagonalise $N \times N$ symmetric, real-valued random matrices \boldsymbol{H}. Take $H_{i j}=H_{j i}$ to be Gaussian-distribued random variables with zero mean and variance $\left\langle H_{i j} H_{k l}\right\rangle=N^{-1}\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)$.
(a) Calculate the density of states

$$
d(E)=\left\langle\frac{1}{N} \sum_{\alpha=1}^{N} \delta\left(E-E_{\alpha}\right)\right\rangle
$$

where $E_{\alpha}(\alpha=1, \ldots, N)$ are the eigenvalues of \boldsymbol{H}, and $\langle\cdots\rangle$ is an average over realisations of random matrices. Check that the average spacing between neighbouring levels in the vicinity of $E=0$ is given by $\Delta=1 /[N d(0)]$. (b) Calculate the distribution of nearest-neighbour level spacings $s_{\alpha}=\mid E_{\alpha+1}-$ $E_{\alpha} \mid / \Delta$. Take pairs of levels in the vicinity of $E=0$.
(c) Calculate the so-called number variance of the spectrum. It is defined as follows. Unfold the spectrum in the vicinity of $E=0$ by dividing the levels by Δ. After unfolding, the number $n(L)$ of levels in an energy interval (around $E=0$) of length L will be on average L. Calculate the variance

$$
\Sigma_{2}(L)=\left\langle n^{2}(L)\right\rangle-L^{2} .
$$

