
Chapter 9

Colloidal suspensions

9.1 Introduction

So far we have discussed the motion of one single Brownian particle in a surrounding
fluid and eventually in an extaernal potential. There are many practical applications of
colloidal suspensions where several interacting Brownian particles are dissolved in a fluid.

Colloid science has a long history startying with the observations by Robert Brown in
1828. The colloidal state was identified by Thomas Graham in 1861. In the first decade
of last century studies of colloids played a central role in the development of statistical
physics. The experiments of Perrin 1910, combined with Einstein’s theory of Brownian
motion from 1905, not only provided a determination of Avogadro’s number but also laid
to rest remaining doubts about the molecular composition of matter. An important event
in the development of a quantitative description of colloidal systems was the derivation of
effective pair potentials of charged colloidal particles. Much subsequent work, largely in
the domain of chemistry, dealt with the stability of charged colloids and their aggregation
under the influence of van der Waals attractions when the Coulombic repulsion is screened
strongly by the addition of electrolyte. Synthetic colloidal spheres were first made in the
1940’s. In the last twenty years the availability of several such reasonably well characterised
”model” colloidal systems has attracted physicists to the field once more. The study, both
theoretical and experimental, of the structure and dynamics of colloidal suspensions is now
a vigorous and growing subject which spans chemistry, chemical engineering and physics.

A colloidal dispersion is a heterogeneous system in which particles of solid or droplets
of liquid are dispersed in a liquid medium. Familiar examples of such systems include
industrial and household products such as paints and inks, food products such as mayon-
naise and ice cream, and biological fluids such as blood and milk. Colloidal dispersions
are characterised by an extremely high area of interface; for example, in a 5 litre tin of
emulsion paint, which essentially consists of polymer spheres of 200 nm radius dispersed
in water, the total area of interface between water and polymer is around 15000 m2. Asso-
ciated with this area of interface is a substantial amount of interfacial energy, and one has
to ask the question why the polymer particles do not combine to form larger aggregates to
reduce this interfacial energy. Thus understanding the stability or otherwise of a colloidal
dispersion is a central issue. Gravity is one force which may destabilise a dispersion; if the
dispersed particles are less dense than the dispersing fluid, they will tend to rise to the
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102 Chapter 9 Colloidal suspensions

surface, or cream, as indeed the fat droplets in untreated full-cream milk will tend to do.
A denser dispersed phase, in contrast, will tend to sediment. Opposing this tendency is
the Brownian motion of the particles; as the dispersed particles become smaller the size
of the gravitational force decreases until it may be in effect overcome by the random ther-
mal motion of the particles. Fullcream milk is homogenised by forcing it through a small
nozzle to reduce the size of the fat globules. If the particles are small enough to minimise
the effect of gravity in destabilising the dispersion, we still need to consider what happens
if particles are able to colIide with each other in the course of their random, Brownian
motion.

When colloidal particles are able to come into contact they will stick together irre-
versibly. As time goes on larger and larger assemblies of particles will be formed in a
process known as aggregation. If we are to render a colloidal dispersion stable against
aggregation, we must modify the forces acting between the colloidal particles, which are
normally attractive, to make the particles repel each other. This can be done by exploiting
electrostatic forces. in charge stabilisation, or by modifying the interfaces by attaching
polymer chains to them, in steric stabilisation.

Particles can be regarded as colloids if they have radii R in the range 1nm < R <
500nm, although any such definition is inevitably imprecise. The lower limit comes from
the requirement that the particles be significantly larger than the molecules of the sus-
pension medium. The upper limit ensures that the particles’ Brownian motion is not
dominated by extraneous effects such as gravitational settling (or rising) or convection.
Typically, then, a colloidal particle is some 100 times larger than an atom. This dispar-
ity of size has several important consequences. Firstly, while the number density n of an
atomic material is ' 5×1022cm−3, that of a typical colloidal suspension is ' 5×1013cm−3.
Since the strength of a solid is proportional to n and the potential energy, per particle,
of interaction is similar in each case, colloidal crystals and glasses are around 100 times
weaker than their atomic counterparts. Secondly we can define a ”structural relaxation
time” τR for a fluid material by

τR =
R2

D

where D is an appropriate self-diffusion coefficient of a particle; τR is the time taken by
the particle to diffuse a distance equal to its radius. For an atomic material τR ≈ 2×10−11

s whereas for a typical colloid τR ≈ 2 × 10−2 s. The weakness of colloidal solids means
that they can easily be disrupted, or melted, by the action of relatively weak forces such
as those induced by a shear flow in the suspension. The large relaxation times mean
that, once shear-melted, a colloidal system will take a macroscopic time (seconds, minutes
or even hours) to recrystallise. Thus well-defined metastable (nonequilibrium) states of
colloidal systems, having lifetimes long enough to allow their experimental study, can be
readily prepared.

The colloid analogue of an atomic fluid’s pressure P is the osmotic pressure Π (thus
van’t Hoff’s low-concentration law Π = nkBT is equivalent to the equation of state of an
ideal gas). The osmotic pressure of suspensions of particles, e.g., proteins, at the lower
end of the colloidal size range, for which n is large, can be measured quite accurately.
However for R ≥ 50 nm, say, measurement of the osmotic pressure is beyond current
experimental capability, except for particles interacting very strongly or for suspensions
at high concentrations.
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Figure 9.1: Relative viscosity as a function of shear rate for model hard-sphere particles.
The shear rate γ̇ is plotted as the dimensionless combination, the Peclet number Pe =
6πη0R

3ν̇/kBT . The solid line is for polystyrene particles of radii between 54 and 90 nm
in water. The circles are 38 nm polysterene particles in benzyl alcohol, and the diamonds
55 nm polystyrene spheres in meta-cresol.

An important difference between atoms and colloids concerns the latter’s size distribu-
tion. The atoms (of one isotope) of a particular element are identical. However, with the
possible exception of some biological materials, colloidal particles inevitably have some
distribution of size or polydispersity. A useful index σ of the polydispersity of spherical
particles is the standard deviation of the particle size distribution P (R) divided by its
mean:

σ =

[
R2 −R2

]1/2

R

where

Rn =
∫

dRRnP (R)

In the best cases synthetic particles can be prepared with σ < 0.01. Frequently polydis-
persities of 0.05 or larger must be tolerated. Strictly, then, a multi-component approach
should be applied to colloidal systems. However common sense suggests that an effective
one-component approach should be adequate for sufficiently narrow distributions. In radi-
ation scattering experiments polydispersities as small as 0.05 can significantly affect both
total intensity and dynamic measurements.

The most commonly-used variable to describe the concentration of a colloidal suspen-
sion is φ, the fraction of the total sample volume which is occupied by the particles. For
a monodisperse system this ”volume fraction” is

φ =
4
3
πR3n

whereas for a polydisperse suspension

φ =
4
3
πR

3
n
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The essentially macroscopic relaxation time τR has important consequences for sus-
pension rheology. A shear flow in a fluid will change its microstructure from that ob-
taining at equilibrium. In an atomic fluid, where experimentally attainable shear rates ν̇
are much smaller than the intrinsic relaxation rate τ−1

R , perturbation of the equilibrium
structure is very small. The fluid is therefore Newtonian, its viscosity being essentially
independent of shear rate. By contrast, in suspension rheology shear rates which exceed
τ−1
R are easily achieved. As a consequence colloidal suspensions show a rich variety of

technologically-important non-Newtonian behaviour. Considerable current effort is being
devoted to determining the connections between the macroscopic rheological properties of
suspensions and their microscopic non-equilibrium structures.

In fig 9.1 the viscosity is plotted as a function of shear rate or Peclet number

Pe =
6πη0R

3

kBT
ν̇

where η0 is the viscosity of the fluid. The plot has a very characteristic shape, with a
transition from a limiting viscosity at low shear rates to a lower limiting value at high
shear rates. The transition occurs over a broad range of shear rates, two or three orders of
magnitude, but the onset of the high shear rate limit is characterised by a Peclet number
of order unity.

The dependence of the viscosity on volume fraction for model hard sphere colloids
is shown in fig. 9.2 for both the high and low shear rate limits. At the lowest volume
fractions no shear rate dependence is detectable, and the Einstein relation

η = η0(1 + 2.5φ) (9.1)

is obeyed. At higher volume fractions, the high shear rate relative viscosity can be fitted
to the function

ηhigh = η0

(
1− φ

0.71

)−2

(9.2)

At low shear rates a similar function

ηlow = η0

(
1− φ

0.63

)−2

(9.3)

provides a good fit. The most striking feature of the viscosities at both high and low shear-
rate limits is that they appear to diverge at a finite volume fraction. In the low shear rate
limit, the volume fraction, 0.63, at which the viscosity appears to diverge corresponds quite
closely to the volume fraction for random close packing of hard spheres, which is φ = 0.64.
At slightly lower volume fractions than this we would expect this divergence in viscosity
to lead to a glass transition, and indeed it is found that random hard-sphere colloids
with volume fractions between about 0.58 and the random close-packing limit form long-
lived metastable states, rather than ordering to the thermodynamically favoured, lower
free energy, close-packed crystal. The higher volume fraction marking the divergence in
the high shear. rate limit is closer to the volume fraction for a close-packed crystal at
φ = 0.7404. This must reflect an ordering induced by the shear flow at these higher shear
rates.
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Figure 9.2: Relative viscosity as a function of volume fraction for model hard spheres,
in the limit of low shear rates (filled symbols) and high shear rates (open symbols). The
solid lines are the fitting functions in (9.2) and (9.3) respectively. The dashed line is
the Einstein prediction for the dilute limit in (9.1). Squares are 76 nm silica spheres in
cyclohexane and triangles are polysterene spheres of radii between 54 and 90 nm in water.

9.2 Interparticle forces

To describe a system of interacting Brownian particles a potential of mean force U(rN )
which depends, in general in a complicated fashion, on the positions rN = {r1, r2, . . . , rN}
of all the colloidal particles. To make progress it is usually assumed that U can be written
as the sum of a pair potentials V (rj − rk), which, for spherical particles, are taken to be
spherically symmetrical, so that

U(rN ) =
∑
j>k

V (rj − rk) (9.4)

strictly V should be called the ”effective pair potential of mean force”. Equation (9.4)
implies that the interaction between particles j and k is not affected by the presence of
other particles. For short-ranged interactions, such as those of hard spheres, this is clearly
a reasonable assumption. For forces of longer range its validity is doubtful. For example,
in the case of the screened Coulombic interaction of charged particles, the proximity of a
third particle will almost certainly distort the counterion atmospheres, and thereby affect
the interaction, of particles j and k. There is little, if any, direct experimental evidence of
the breakdown of the pairwise additivity assumption (9.4).

9.2.1 Van der Waals attraction

Between any two bodies, of matter there is a force caused by the interaction between
the fluctuating electromagnetic fields associated with their polarisabilities. This force is
attractive and is known as the dispersion, van der Waals or London-van der Waals force.
The attraction between two atoms separated by distance r goes as r−6 and the interaction
between two particles of radius R, obtained by summing over all pairs of atoms, is

VA(r) =
A

6

[
2R2

2r22− 4R2
+

2R2

r2
+ ln

(
1− 4R2

r2

)]
(9.5)
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where r is now the centre-to-centre separation. The Hamaker constant A is determined
by the material properties of the particles and suspension medium, in particular their
frequency-dependent polarisabilities; a typical value of A is 10−20 J. Of future relevance
is the fact that if the particles and liquid have equal polarisabilities, A = 0. Thus if
the refractive indices of the particles and liquid are matched at the frequency of visible
light, van der Waals attractions are expected to be negligible (or at least small since some
difference in polaris abilities may obtain at other frequencies). For large interparticle
separations the r−6 behaviour is recovered, as expected,

lim
r→∞

VA(r) = −16
9
A

(
R

r

)6

. (9.6)

When the spheres are close to touching,

lim
r→2R

VA(r) = − A
12

R

r − 2R
. (9.7)

In principle, therefore, the attractive potential at touching, r = 2R, is infinite. In reality
the steep Born repulsion, due to the overlap of electron clouds, intervenes. Furthermore,
solvation forces, associated with the finite size of the liquid molecules, become important
at small separations. Nevertheless the effect of van der Waals forces is to create a deep
potential minimum near r = 2R which can be many times greater than the thermal energy
kBT . Suspended particles which are unprotected will soon aggregate irreversibly under the
influence of these strong attractions. It is therefore necessary to provide some stabilisation
mechanism which provides a large positive potential barrier in V (r). Two approaches are
common, charge and steric stabilisation.

Electrostatic double-layer forces

Charged colloidal particles can be regarded as ”macroions”. On their surfaces are ionisable
groups at least some of which dissociate when the particles are dispersed in a polar liquid
such as water. The particles thus acquire a charge, typically 102 to 105 elementary charges
e. The counterions discharged into the liquid move away from the macroion in Brownian
motion but nevertheless remain in its field of force. The result is an electrical double
layer surrounding the particle, composed of the counterions and the ions of any electrolyte
present in the suspension. When two macroions approach each other, overlap of their
double layers causes a repulsive force which can stabilise the particles against aggregation.

Rather than a direct Coulomb interaction between two charged particles, one finds
a screened Coulomb interaction which exponentially decays in strength with distance.
Suppose our particles are ionised. Overall charge neutrality will be maintained by a layer
of counterions which will be attracted to the surface by the electrostatic field. Some of
these counterions may be tightly bound to the surface (this layer of tightly bound ions is
known as the Stern layer), but more will form a diffuse concentration profile away from the
surface. There will be an electrostatic potential VC(r) at a distance r from the particle,
and the density of ions n(r) will be determined by the Boltzmann distribution

n(r) = n0 exp
(
−zeVC(r)

kBT

)
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where the charge of the ions is ze.
Now the potential VC(r) is itself determined by the distribution of net charge ρ(r) by

the Poisson equation

∇2VC(r) = −ρ(r)
εε0

(9.8)

where ε0 is the dielectric constant in vacuum, and ε the relative dielectric constant.
In the simplest case where the only ions present are the counterions needed to balance
the charge of the surface, ρ = zen, and we can combine these two equations to give the
Poisson- Boltzmann equation:

∇2VC(r) = −zen(r)
εε0

(9.9)

In general we have both negative and positive ions to consider. Taking these concentrations
to be n+ and n− we have

n±(r) = n0 exp
(
∓zeVC(r)

kBT

)
where n0 is the ionic concentration in bulk solution. The net charge density is given by

ρ = ze(n+ − n−)

so assuming spherical symmetry

1
r2

d
dr

(
r2 d

dr
VC(r)

)
=

2zen0

εε0
sinh

(
zeVC(r)
kBT

)
. (9.10)

Let VC(r) = u(r)/r, i.e dVC(r)/dr = −u(r)/r2 +u′(r)/r, and so r2V ′(r) = −u(r)+ru′(r).
This leads to

d2

dr2
u(r) =

2zen0

εε0
r sinh

(
zeu(r)
kBTr

)
≈ 2z2e2n0

εε0kBT
u(r) (9.11)

where we have made the approximation sinh(zeu(r)/kBT ) ≈ (zeu(r)/kBTr). In this limit
(known as the Debye-Hückel approximation) (9.11) has the solution

VC(r) =
u(r)
r

=
q2
e

εε0r
e−κr (9.12)

where qe is the effective charge on the macroion, and κ has the value

κ =
(

2z2e2n0

εε0kBT

)1/2

(9.13)

There is also an increasing solution to (9.11) but this has to be rejected since the potential
has to approach zero as r →∞.

Thus in an electrolyte, electric fields are screened. The length which characterises
this screening, κ−1, is known as the Debye screening length. At distances much greater
than the Debye screening length, which is inversely proportional to the square root of the
concentration of salt in the electrolyte, the strength of the direct electrostatic interaction
between charged objects rapidly falls to zero.
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Figure 9.3: Effective potential V (r), the sum of the van der Waals attraction, eq. (9.6), and
the Coulombic repulsion, for charged particles. (a) Radius R = 50 nm, charge qe = 200
e, Hamaker constant A = 10−20 J, temperature T = 293 K, relatively low electrolyte
concentration giving screening parameters κ such that κR = 0.1(top curve), 0.2, 0.5, 1,2
(bottom curve). (b) R = 500 nm, qe = 5 × 104e, A = 10−20 J, T = 293 K, moderate
electrolyte concentration giving κR = 123. In each case note the primary minimum at
touching (interparticle separation r = 2R) and maximum at slightly larger r. In (a) the
van der Waals attraction has negligible effect at separations somewhat greater than 2R.

The effective pair interaction of charged macroions becomes:

VC(r)

{
0 0 < r < 2R

q2e
εε0r

e−κr, r > 2R
(9.14)

The total pair potential V (r) of charged particles is the sum of the van der Waals at-
traction VA(r) and the Coulombic repulsion VC(r). Typically V (r) has the form sketched
in fig. 9.3. For r ≈ 2R the attraction dominates and V (r) has a deep ”primary” min-
imum. Except in the case of small macroion charge and/or large screening parameter κ
the repulsion dominates at somewhat larger r, providing a maximum in V (r). For the
suspension to be stable for a reasonable length of time against aggregation qe and κ must
be such that the maximum in V (r) is greater than about 20kBT . Finally, at larger r, since
VA decays as r−6 and VC decays exponentially, V (r) shows a secondary minimum.

Steric stabilisation

Steric stabilisation is achieved by coating colloidal particles with layers of polymer. Many
types of ”polymer” may be used for this purpose, ranging from relatively short alkane
chains through various more complex structures to essentially random coils. The coating
may be physically adsorbed on the particle or chemically bonded to it. Because of the
wide variety of systems (particles, polymer, solvent) encountered it is not possible to give a
theory of steric stabilisation which has the same generality as that of charge stabilisation.
The close approach of two coated particles causes compression of their interpenetrating
polymer layers. The resulting strong repulsive force provides the steric stability. At
somewhat larger interparticle separations, where layer interpenetration is still significant,
more specific polymer-polymer interactions can be important. For random-coil polymers
these interactions can be attractive or repulsive and are determined by the temperature-
dependent degree of solvency of the suspension liquid for the polymer. The interaction is
repulsive in a good solvent and attractive in a poor solvent. For coatings whose thickness
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Figure 9.4: Stabilisation of colloids with layers of polymers sticking to the surface. When
the particles come close enough for the polymers to overlap, a local increase in polymer
concentration leads to a repulsive force.

is small compared to the particle radii the total polymer-polymer interaction occurs over
a narrow range of interparticle spacing close to touching. In a good solvent, then, if van
der Waals attractions are negligible, the effective pair potential can be approximated as
that of hard spheres.

In general, the total interaction potential of sterically stabilised particles is, of course,
the sum of the steric contribution and the van der Waals attraction. The latter will provide
an attractive part to V (r).

9.3 Equilibrium properties

The effective pair potential of suspended colloidal spheres can take on a wide variety of
forms, determined by the system and the composition of the suspension medium. Typ-
ically, for a stable suspension, a hard or soft repulsion is followed by a strong or weak
attraction. Qualitatively this potential is similar in form to the Lennard-Jones potential
of atoms.

VLJ(r) = 4ε
[(σ
r

)12
− 2

(σ
r

)6
]

Not surprisingly, therefore, colloidal particles in suspension can exhibit essentially the
same range of phase behaviour as does a simple atomic system. However, while the pair
potentials of (nonmetallic) atoms are usually assumed to be independent of temperature
and density, those of colloids can vary, sometimes strongly, not only with temperature
and concentration but also with other suspension conditions. For example the screening
parameter κ in (9.13) in a suspension of charge stabilised colloids depends on temperature
both explicitly and implicitly, through the variation of the dielectric constant ε, as well
as on suspension ionic strength. Both van der Waals and specific coating interactions of
sterically-stabilised colloids can be temperature dependent. The effective pair potential
is also a strong function of any added free polymer. The simplest case to consider is the
phase diagram for a hard sphere potential.
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Figure 9.5: Refractive-index-matched suspensions of PMMA spheres of radius 325 nm
illuminated by white light and photographed four days after shear-melting by tumbling.
Concentration, in range 0.48 ≤ φ ≤ 0.63, increases from right to left and samples are
designated by labels 2-10 (see fig. 9.6). Sample 2 is colloidal fluid. Samples 3-5 show
coexisting fluid and homogeneously-nucleated polycrystalline phases. Samples 6 and 7 are
fully polycrystalline. In samples 8-10 crystallisation is heterogeneously-nucleated. Lower
portions of samples 9 and 10 remained amorphous (or glassy) for many weeks. From
Pusey and van Megen.

Phase behaviour of hard spheres

Hard spheres have no critical point so that all observed behaviour is supercritical. The
existence of a freezing transition of hard spheres was anticipated in early analytic work and
computer simulation by calculating the free energy of the fluid phase and the solid phase.
On equating (osmotic) pressures and chemical potentials for the two phases one could
identifie the freezing point. At freezing the volume fractions of the coexisting fluid and
solid phases were found to be φF = 0.494±0.002 and φM = 0.545±0.002. Recent theories
and computer simulations have suggested that an assembly of hard spheres, if compressed
rapidly enough to bypass crystallisation, can achieve a high-density metastable solid (or
glass) state. From computer simulation studies of both thermodynamic and dynamic
properties of the metastable states of hard spheres a glass transition at φG ≈ 0.58± 0.02
has been identified. The first experimental study of the freezing transition of roughly
hardsphere colloids of PMMA particles, gave the effective volume fraction of the crystalline
phase to be about 0.51.

A more detailed study of the phase behaviour of hard-sphere colloids has been reported
by Pusey and van Megen who used PMMA spheres. The particles had radii of about 325
nm. Nine samples were prepared in a range of concentration which spanned both the
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Figure 9.6: ”Phase diagram” of hard colloidal spheres, summarising behaviour seen in fig.
9.5. Numbers at top are sample designations. F, M and RCP indicate respectively the
predicted freezing, melting and random-close-packed concentrations. From Pusey and van
Megen.

freezing and glass transitions. The samples were driven into metastable (or equilibrium)
fluid states by slow tumbling which shear-melted any crystals present initially. They were
then left undisturbed and were observed over several weeks. Figure 9.5 show the situation
after four days. Because the lattice parameter of crystals of these particles is of order 0.5
µm, the crystalline phases in fig. 9.5 can be identified directly from the Bragg reflection
of light. The diversity of observed phase behaviour is summarised in fig. 9.6.

The most dilute sample, 2, showed no macroscopic change with time and, presumably,
is an equilibrium colloidal fluid. The next three samples, 3-5, contain coexisting colloidal
fluid and homogeneously-nucleated polycrystalline phases. The fractions of the volumes
of the samples occupied by the solid phase were measured. Extrapolation to 0 and to
100% crystal then provides freezing and melting concentrations. While the weight frac-
tions of these samples can be measured accurately, it is difficult to determine the volume
fractions. Thus the weight fraction at which freezing commenced was identified with an
effective hard-sphere volume fraction φF = 0.494. The volume fractions of other samples
were then obtained by the appropriate scaling of their measured weight fractions. The
observed melting concentration, 0.535, is somewhat lower than the expected hard-sphere
value, 0.545. This difference is probably no larger than the experimental uncertainty which
arises mainly from imprecise location of the fluid-solid interfaces which change with time
due to slow sedimentation of the particles. Samples 6 and 7 are completely filled with
small homogeneously-nucleated crystallites. No homogeneously-nucleated crystallization
was observed in sample 8 but large irregular crystallites grew inwards following heteroge-
neous nucleation at the meniscus and cell walls. In samples 9 and 10 crystals, nucleated
heterogeneously at the meniscus only, grew downwards; however the lower parts of these
samples remained amorphous, i.e., glassy, for the duration, several weeks, of the observa-
tions. The glass transition concentration φG is about 0.59, in reasonable agreement with
the theoretical value of ' 0.58.

Another characteristic concentration of the hard-sphere system is that of random close
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packing, φRCP ≈ 0.64. This theoretical value compares favourably with the volume frac-
tion, ' 0.66, of the amorphous sediment formed by centrifuging samples, initially in the
fluid state, rapidly enough to avoid crystallisation.

Thus the overall behaviour of this system is similar to that expected for hard spheres.
Relatively small differences between experiment and theory may be associated with slight
softness or attractions in the pair potential and/or polydispersity.

Structure from light-scattering

The theory for light scattering is based on the assumptions:

(i) that the intensity of light scattered by the suspension medium is negligible compared
to that scattered by the particles.

(ii) that, nevertheless, the particles scatter weakly enough that only single scattering, in
the first Born approximation, need be considered.

(iii) that the incident light is polarized with its electric vector perpendicular to the scat-
tering plane.

(iv) that the individual particles are orientationally symmetrical so that the refractive
index profile, ni(r), of particle i depends only on the radial distance r from the
centre of the particle.

Apart from uninteresting factors the amplitude bi(q) of the field of the light scattered
by particle i can be written

bi(q) = 4π
∫ ∞

0
drr2 [ni(r)− n0]

sin(qr)
qr

(9.15)

here n0 is the refractive index of the suspension medium and q is the usual scattering
vector whose magnitude q is given by

q =
4π
λ

sin
θ

2
(9.16)

λ being the wavelength of light in the suspension and θ the scattering angle. The instan-
taneous amplitude E(q, t) of the field of the light scattered by an assembly of N particles
is

E(q, t) =
N∑
i=1

bi(q)eiq·ri(t) (9.17)

where ri(t) is the position of the centre of particle i at time t. The instantaneous intensity
of the scattered light is given by

I(q, t) = |E(q, t)|2 (9.18)

and its average value by

〈I(q, t)〉 =
N∑
i=1

N∑
j=1

〈bi(q)bj(q) exp[iq · (ri − rj)]〉 (9.19)
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where the angular brackets indicate an ensemble average. In the case of a polycrystalline
sample this includes an average over all orientations of the crystallites.

For monodisperse particles all bi(q) are the same, bi(q) = b(q). Equation (9.19) can
then be written

〈I(q, t)〉 = Nb2(0)P (q)S(q), (9.20)

where P (q) is the (single-particle) form factor,

P (q) =
[
b(q)
b(0)

]2

, (9.21)

and S(q) the static structure factor

S(q) =
1
N

N∑
i=1

N∑
j=1

〈exp [iq · (ri − rj)]〉. (9.22)

Experimentally the structure factor of a monodisperse system can be determined by the
following procedure: (i) a dilute suspension, for which S(q) = 1 (negligible positional
correlations), is prepared and its intensity 〈I(q, t)〉 = N1b

2(0)P (q) measured; (ii) the
intensity 〈I(q, t)〉 = N2b

2(0)P (q)S(q) of the concentrated suspension is measured; (iii)
the ratio of the second to the first measurement provides an experimental estimate of
(N2/N1)S(q.

For homogenous spheres of radius R and refractive index np eq. (9.15) can be evaluated
to give

b(q) = R3(np − n0)
3

(qR)3
((sin(qR)− qR cos(qR))

so that (9.21) becomes

P (q) =
9

(qR)6
((sin(qR)− qR cos(qR))2 . (9.23)

This form factor has a zero at qR = 4.49, followed by a secondary maximum of mag-
nitude only about 0.007 at qR = 5.76. Because this weak scattering may be corrupted by
extraneous contributions, such as background or residual multiple scattering, it is difficult
to measure reliable values of S(q) for qR ≥ 4. Thus, for concentrated suspensions of hard
spheres the static structure factor S(q) can only be obtained reliably up to just beyond
the main peak which occurs at qR ≈ 3.5. However for dilute suspensions of interacting
charged particles, where because of the large interparticle spacing, the first peak in S(q)
can be found at qR < 1, higher-order peaks can be measured with reasonable accuracy.

For polydisperse systems eq. (9.19) can no longer be simplified to the form of (9.20)
since the factors bi(q)bj(q) and exp [iq · (ri − rj)] are correlated through their dependences
on the particle radii Ri and Rj . Nevertheless we can define a ”measured structure factor”
SM (q) for a polydisperse system as the ratio of intensity scattered by a concentrated
suspension to that scattered by a dilute suspension (and multiplied by the concentration
ratio) i.e.,

SM (q) =

∑N
i=1

∑N
j=1〈bi(q)bj(q) exp[iq · (ri − rj)]〉∑N

i=1 b
2
i (q)
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Figure 9.7: Radial distribution function and structure factor for charged colloids of radius
23 nm and volume fraction 4.4 × 10−4 at low electrolyte concentration. Data points are
obtained from computer simulation. The solid lines and dashed lines are theoretical results
with the same potential. The mean interparticle spacing, roughly the position of the main
peak in g(r), is some eleven particle diameters for this long-ranged potential.

=
1

Nb2(q)

N∑
i=1

N∑
j=1

〈bi(q)bj(q) exp[iq · (ri − rj)]〉 (9.24)

where b2(q) is scattered intensity per particle, averaged over the particle size distribution.
In general

bn(q) =
1
N

N∑
i=1

bni (q).

Clearly SM (q)→ S(q) for a mono disperse system.
It has been suggested that it might, in some cases, be a reasonable approximation

to neglect the correlation between scattering amplitudes and positions in a polydisperse
system by ”decoupling” the average in eq. (9.24):

SM (q) =
1

Nb2(q)

N∑
i=1

N∑
j=1

bi(q)bj(q)〈exp[iq · (ri − rj)]〉 (9.25)

Since

bi(q)bj(q) =

{
b2(q) for i = j

b(q)
2

for i 6= j
(9.26)

eq. (9.25) becomes
SM (q) = (1− x(q))S(q + x(q)

where
x(q) = 1− b(q)2

/b2(q)

where S(q) is the structure factor applying to a monodisperse system at the same number
density as the polydisperse system under consideration. The decoupling approximation
neglects the fact that in general there is a correlation between fluctuations in the relative
concentrations of the species and fluctuations in the total number density.
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Figure 9.8: Measured structure factors of deionised aqueous suspensions of polystyrene
spheres of radius 37.5 nm. *, volume fraction φ = 5.0 × 10−3; +, φ = 2.0 × 10−3; x,
φ = 9.7× 10−4; o, φ = 6.4× 10−4. Lines are predictions of theoretical calculations.

From the structure factor one also obtain the pair distribution function g(r) which is a
direct measure of the correlation of particle positions. If n is the average number density
in the suspension ng(r)dV is the average number of particles in a small volume element
dV centered at a distance r from a given particle. The static structure factor is the Fourier
transform of g(r), i.e.

S(q) = 1 + n

∫
dreiq·r[g(r)− 1] (9.27)

In fig. 9.7 we show the static structure factor and the corresponding radial distribution
function for a charged colloidal system.

In fig 9.8 are measured structure factors for suspensions of polysterene spheres in water.

9.4 Dynamical light scattering

In order to formulate a theory of dynamical light scattering (DLS) we start with the same
assumptions as were used above in the context of static scattering. When (coherent) laser
light is scattered by an amorphous assembly of particles, such as a colloidal fluid, the
instantaneous far-field pattern of scattered radiation constitutes a random diffraction or
”speckle” pattern consisting of bright and dark regions. Each speckle subtends a solid
angle ' (λ/V 1/3)2 at the sample, where ,λ is the light wavelength and V the scattering
volume. The instantaneous intensity of a speckle is

I(q, t) = |E(q, t)|2,

where E(q, t) is the instantaneous scattered electric field

E(q, t) =
N∑
i=1

bi(q)eiq·ri(t) (9.28)

and q is the scattering vector as before. As the particle positions rN (t) = {r1(t), . . . , rN (t)}
change by Brownian motion the phase relationships determining the speckle pattern change
and the pattern evolves through a sequence of random configurations.

In dynamic light scattering a detector having sensitive area roughly equal to the size
of one speckle is placed in the far-field. The signal registered by the detector, proportional
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to the fluctuating intensity I(q, t), is fed to a photon correlator which constructs its time
correlation function. Under the conditions

(i) that the scattering volume V contains a large number N of particles,

(ii) that the range of spatial correlation of the particles is much smaller than V 1/3 and

(iii) that, given enough time, the particles can diffuse throughout the suspension (Le.,
the system is ergodic),

it is possible to show that the field E(q, t) is a zero-mean complex Gaussian variable. The
factorization properties of such a variable then enable the measured (time-averaged) inten-
sity correlation function to be written in terms of the (ensemble-averaged) time correlation
function of the scattered field:

〈I(q, 0)I(q, t)〉 = 〈I(q)〉2
(
1 + C〈E(q, 0)E∗(q, t)〉2

)
(9.29)

where C is an apparatus constant of order one. Dynamic light scattering thus provides
an experimental estimate of the field correlation function 〈E(q, 0)E∗(q, t)〉. The field
(9.28) can be recognized as the instantaneous amplitude of the spatial Fourier component,
having wavevector q, of the refractive index fluctuations in the suspension (or, in the case
of identical particles, fluctuations in the number density). With use of eq. (9.28) we can
write

〈E(q, 0)E∗(q, t)〉
〈I(q)〉

=
FM (q, t)
SM (q)

(9.30)

where, by analogy with the measured static structure factor SM (q) (9.24), we have defined
a ”measured” coherent intermediate scattering function FM (q, t) as

FM (q, t) =
1

Nb2(q)

N∑
i=1

N∑
j=1

〈bi(q)bj(q) exp[iq · (ri(0)− rj(t))]〉 (9.31)

The fundamental quantity measured in a dynamic light scattering experiment is then the
the corresponding normalised function

ΦM (q, t) = FM (q, t)/SM (q).

Here FM (q, t = 0) = SM (q) and therefore ΦM (q, t = 0) = 1.
For monodisperse particles, i.e. bi(q) = b(q) (9.31) becomes

FM (q, t) = F (q, t) =
1
N

N∑
i=1

N∑
j=1

〈exp [iq · (ri(0)− rj(t))]〉 (9.32)

which is the intermediate scattering function of identical particles.
It is possible to prepare a suspension which contains particles which are the same in

terms of size and interactions but have slightly different refractive indices and therefore
different scattering amplitudes bi(q). Then it is permissible to perform the decoupling of
the average in (9.31), which was discussed above in the context of static scattering, to give

FM (q, t) =
b(q)

2

b2(q)
F (q, t) +

[
1− b(q)

2

b2(q)

]
F s(q, t) (9.33)



9.5 Calculation of intermediate scattering functions 117

where F s(q, t) is the self intermediate scattering function

F s(q, t) = 〈exp (iq · (ri(0)− ri(t))〉. (9.34)

9.5 Calculation of intermediate scattering functions

For a dilute systems of Brownian particles it is possiblew to obtain explicit expressions for
the density correlation functions F (q, t) and F s(q, t). We start from a Langevin equation
for ri(t), the position of particle i at time t,

mr̈i(t) = −γṙi(t) + F i(t).

Here m is the mass of the particle and γ its friction coefficient:

γ = 6πη0R

The force F i(t) on the particle is the sum of Ξi(t), the rapidly fluctuating (essentially
white-noise) effect of the thermal agitation of the suspension medium, and F I

i (t), the
result of direct interactions with the other particles:

F i(t) = F I
i (t) + Ξi(t).

The first contribution can be written

F I
i (t) = − ∂

∂ri
U
[
rN (t)

]
where U is the effective potential of mean force.

If interparticle forces can be neglected, as in a dilute enough suspension, the results of
integrating the Langevin equation was derived in chapter 4. The autocorrelation function
of the velocity vi of a free Brownian particle is given by

〈vi(0)vi(t)〉 =
3kBT

m
exp(−t/τB)

with the Brownian relaxation time

τB =
m

γ
=

2R2ρM
9η0

(9.35)

where ρM is the mass density of the particle.
The mean-square displacement of a free Brownian particle is

〈(∆ri(t))
2〉 = 〈[ri(0)− ri(t)]

2〉 = 6D0 [t− τB + τB exp(−t/τB)] (9.36)

where D0 is the ”free-particle” diffusion constant

D0 =
∫ ∞

0
dt〈vi(0)vi(t)〉 =

kBT

γ

The mean squared displacement has the limits

〈(∆ri(t))
2〉 =

{
kBT
m t2, t� τB

6D0t, t� τB
(9.37)
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Figure 9.9: Correlation function obtained with light scattering at a scattering angle of
60◦ for a solution containing 0.17 mg/cm3 of fd DNA in SCC (0.15 m NaCl, 0.015 m
Nacitrate, pH=8) as a function of τ/τc where τc = (q2D)−1 is the correlation time. (From
Newman, J., Swinney, H. L., Berkowitz, S. A. and Day, L. A. Biochem. 13, 4832 (1974).)

An important conclusion can be drawn from these results. The distance moved by a
typical colloidal particle in time τB is very small compared to its radius. In other words,
the positions of non-interacting particles in suspension change by significant fractions of
their radii only in times much greater than τB(t� τB) in which their Brownian velocities
have undergone many fluctuations and their motions are effectively diffusive.

In dilute suspensions where interactions between particles can be neglected we now
find

F (q, t) ≈ S(q)F s(q, t)

and since ri(t)− ri(0) is a Gaussian variable with mean value zero

F s(q, t) = 〈exp (iq · (ri(0)− ri(t)))〉 = exp
(
−q

2

6
〈(∆ri(t))

2〉
)
. (9.38)

For short times we get the free-particle result

F s(q, t) = exp
(
−kBT

2m
q2t2

)
and for long times the diffusion result

F s(q, t) = exp
(
−D0q

2t
)

(9.39)

In fig. 9.9 we show light scattering measurements of F (q, t) for highly monodisperse
sample of single-stranded circular DNA from the fd bacteriophage, and these data can be
fitted very well to the low density result in (9.39).

9.6 The Smoluchowski equation

To describe the motions of interacting Brownian particles over times measured by DLS
it is sufficient to consider their configuration space distribution function P (rN , t), where
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rN represents the set of position vectors of the N particles. An equation for P can be
obtained from the Langevin equation above in the strong damping limit, and this leads
to the Fokker-Planck or Smulochowski equation. A simple derivation of this equation
based on a thermodynamic picture was introduced by Einstein in his study of free particle
Brownian motion. A nonequilibrium distribution P (rN , t), is prevented from relaxing by
the application to each particle of a fictive force F h

i (rN ) derived from a potential Ψ(rN ):

F h
i (rN ) = − ∂

∂ri
Ψ((rN )

In this hypothetical equilibrium situation P (rN ) is giyen by the Boltzmann expression

P (rN ) = const× exp
(
− 1
kBT

[
Ψ(rN ) + U(rN )

])
where interparticle interactions and any external applied forces are represented by the
potential U(rN ). Consequently the force F h

i (rN ) is given by

F h
i (rN ) =

∂

∂ri
U(rN ) + kBT

∂

∂ri
lnP (rN )

The last term represents an entropy force coming from the constraints from the fictive
potential.

If P (rN , t) is now allowed to relax (the forces F h
i (rN ) are ”switched off”) a force

−F h
i (rN ) will be driving the diffusive motion of the ith particle, We assume that a coarse-

grained description of particle motion is adequate on the timescale τs � t � τR and
write

vi = −
∑
j

Gij · F h
i

where the Gij is a generalised mobility tensor. The conservation law for the distribution
P now leads directly to a generalized diffusion or Smoluchowski equation

∂

∂t
P (rN , t) = −

N∑
i=1

∂

∂ri
·
[
viP (rN , t)

]
= −LSP (rN , t) (9.40)

and

LSP (rN , t) =
N∑
i=1

N∑
j=1

∂

∂ri
·Dij ·

[
β
∂

∂rj
U(rN )P (rN , t) +

∂

∂rj
P (rN )

]

=
N∑
i=1

N∑
j=1

∂

∂ri
·Dij · exp

[
−βU(rN )

] ∂

∂rj

{
exp

[
βU(rN )

]
P (rN , t)

}
(9.41)

where β = 1/kBT and the diffusion and mobility tensors are related through the Einstein
relation

Dij = kBTGij
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The generalized Smoluchowski equation (9.40) also determines the time dependence of
P (rN , t|rN0 , 0), the conditional probability that the system of particles ave the configura-
tion rN at time t, given that its configuration at time zero was rN0 . As

P (rN , t|rN0 , 0) =
∏
i

δ(ri − r0i) = δ(rN − rN0 )

the time evolution of the system of particles can be described by the propagator

P (rN , t|rN0 , 0) = e−LStδ(rN − rN0 )

obtained by the formal solution of (9.40).
In the case of independent particles, U(rN ) = 0, we have

Gij =
1
γ
δijI

where I is the unit dyadic, (9.40) reduces to the simple diffusion equation. This leads to
the diffusion tensor

Dij = D0δijI.

9.7 Memory functions

A solution of the Smulochowski equation for a system of N interacting particles with N
of the order of Avogadros number is not possible. Therefore one has to rely on approx-
imations. Such approximations generally starts from a reformlation of the equations in
terms of memory functions for a set of relevant dynamical variables. The derivation of the
memory function is well established, and the essential steps are given below.

We consider a system described by a probability distribution in some state space of
varibles a and satisfying the equation

∂

∂t
P (a, t) = Ω(a)P (a, t) (9.42)

Here a denotes a set of state variables and Ω is some stochastic operator like the Fokker-
Planck or Smoluchowski operator Ω = −LS or possibly the Liouville operator Ω = −iL.
We will be interested in averages of some relevant dynamical variable A(a) given by

〈A(t)〉 =
∫

daA(a)P (a, t) =
∫

daA(a, t)P (a, 0) (9.43)

Here we will consider a single variable but A could in the general case denote a column
vector. A(a, t) satisfies the equation

∂

∂t
A(a, t) = Ω†(a)A(a, t) (9.44)

and Ω† denotes the adjoint operator.
We assume that the variable A has zero equilibrium average, and we introduce a

projection operator PA defined as

PAX(a) = A(a)(〈A∗A〉)−1〈A∗X〉; or PA =
∣∣A〉(〈A∗A〉)−1〈A∗

∣∣ (9.45)



9.7 Memory functions 121

where the asterisk denotes the complex conjugate variable. Here the bracket notation is
given by

〈A | =
∫

daA(a) . . .

| A〉 =
∫
. . . A(a)Peq(a)da (9.46)

where . . . stands for another arbitrary function of the state variables a or in some case
an operator. We will deal with a normalized variable A such that the equilibrium static
correlation function is unity,

S = 〈A∗A〉 =
∫
A∗(a)A(Γ)Peq(a)da = 1 (9.47)

In calculating the average values of the variable A only the part PAP (a, t) enters, and we
make the decomposition

P (a, t) = PAP (a, t) +QAP (a, t) = P1(a, t) + P2(a, t) (9.48)

where QA = 1− PA. This leads to the coupled equations

∂

∂t
P1(a, t) = PAΩPAP1(a, t) + PAΩQAP2(a, t)

= Ω11P1(a, t) + Ω12P2(a, t) (9.49)
∂

∂t
P2(a, t) = QAΩQAP2(a, t) +QAΩPAP1(a, t)

= Ω22P2(a, t) + Ω21P1(a, t) (9.50)

Solving (9.50) gives

P2(a, t) =
∫ t

0
eΩ22(t−s)Ω21P1(a, s) ds+ eΩ22tP2(a, 0) (9.51)

Substituting this into (9.49) gives

∂

∂t
P1(a, t)− Ω11P1(a, t) +

∫ t

0
dsM̂(t− s)P1(a, s)

= Ω12eΩ22tP2(a, 0) (9.52)

where the operator M̂ is given by

M̂(t) = −Ω12eΩ22tΩ21 = −Ω12R(t)Ω21 (9.53)

and R(t) = exp(Ω22t). Taking now the scalar product with 〈A∗ | from the left and inserting
the expression for the projection operator gives the equation

∂

∂t
〈A∗(t)〉+ ωA〈A∗(t)〉+

∫ t

0
dsM(t− s)〈A∗(s)〉 = 〈A∗ΩQR(t)Q〉 (9.54)
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Here the frequency ωA is given by

ωA = −〈A∗ΩA〉 (9.55)

and the memory function by

M(t) = −〈A∗ΩQR(t)QΩA〉 (9.56)

For the correlation function

C(t) = 〈A∗(t)A(0)〉 (9.57)

this leads to the equation

∂

∂t
C(t) + ωAC(t) +

∫ t

0
dsM(t− s)C(s) = 0 (9.58)

A Laplace transformation then gives

C(z) =
1

z + ωA +M(z)
(9.59)

Irreducible memory function

For a stochastic operator like the Smoluchowski operator Cichocki and Hess argued that
(9.59) was not the best starting point for approximations on the memory function M(z)
since it may lead to unphysical results with a negative viscosity. They introduced an ad-
ditional projection operator and obtained in this way a further reduction to an irreducible
memory function M irr(z). Later Kawasaki showed how this reduction could be generalized
to a whole class of operators. A straightforward way of obtaining the irreducible memory
function is to solve for P1(a, t) in (9.49) and insert into (9.50). This gives

P1(a, t) = (Ω11)−1 ∂

∂t
P1(a, t)− (Ω11)−1Ω12P2(a, t) (9.60)

The “inverse” operator (Ω11)−1 is defined via

(Ω11)−1 = (PAΩPA)−1 = −
∣∣A〉ω−1

A 〈A
∗∣∣ (9.61)

and satisfies
(PAΩPA)−1(PAΩPA) = (PAΩPA)(PAΩPA)−1 = PA (9.62)

Here we assume that the inverse ω−1
A exists. Equation (9.50) now reads

∂

∂t
P2(a, t)−QA(Ω− Ω0)QAP2(a, t) = Ω21(Ω11)−1 ∂

∂t
P1(a, t) (9.63)

where
Ω0 = ΩPA(PAΩPA)−1PAΩ (9.64)

This result was obtained by Kawasaki by splitting the operator Ω as

Ω = Ω0 + Ω1 (9.65)
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where Ω1 = Ω − Ω0 is the irreducible operator. We notice that PΩ1 = Ω1PA = 0 or
that QAΩ1 = Ω1QA = Ω1. Therefore the irreducible operator Ω1 acts only in the space
orthogonal to the variable A.

Solving (9.63) as before and inserting the solution in (9.49) gives

∂

∂t
C(t) + ωAC(t) +

∫ t

0
dsM irr(t− s) ∂

∂s
C(s) = 0 (9.66)

The new irreducible memory function is given by

M irr(t) = 〈A∗ΩQR1(t)QΩA〉ω−1
A (9.67)

with
R1(t) = eQAΩ1QAt (9.68)

and the time-dependence is now given by the operator QAΩ1QA = Ω1. For the Laplace
transform this gives

C(z) =
[
z +

ωA
1 +M irr(z)

]−1

(9.69)

From (9.59) and (9.69) one also gets the relation

M(z) = −ωA
M irr(z)

1 +M irr(z)
(9.70)

The simple derivation above shows how the irreducible memory function can be ob-
tained in a straightforward way by solving P1(t) in terms of its derivative from (9.49). By
doing this we include the information contained in eq. (9.49) into eq. (9.50), with the
effect of replacing Ω with Ω1. The effect for the correlation function is that, instead of
renormalising the frequency ωA by M(z), one rather renormalises the relaxation time by
M irr.

9.8 Mode-coupling approxiamtion

We are interested to calculate the intermediate scattering function F (q, t). In a first step
we can find a formal expression for the corresponding memory function and then try to
find some appropriate approximation.

The relevant variable is the density fluctuations

n(r, t) =
N∑
i=1

δ(r − ri(t))

Here the delta-function picks out the positions r which are occupied by a particle in the
system. The average of n(r, t) is just the mean density n in a homogeneous system. By
taking the Fourier transform we find

n(q, t) =
N∑
i=1

eiq·ri(t)
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and it follows that
F (q, t) =

1
N
〈n∗(q, 0)n(q, t)〉 (9.71)

i.e. the intermediate scattering function is just the density-density correlation function.
We can now choose the density n(q) as the fundamental variable A and set up the

memory function in the last section. This gives the formal expression

F (q, z) = S(q)
[
z +

Ω(q)
1 +M irr(q, z)

]−1

(9.72)

We then need to calculate the frequency Ω(q and find a more explicit expression for
M irr(q, z).

The projection operator in this case is

Pn = |n(q)〉S−1(q)〈n∗(q)| = 1−Qn

and so the frequency ωA is

Ω(q) = 〈n∗(q)LSn(q)〉/S(q) = ω(q)/S(q)

For any two dynamical variables A and B we have

〈A(rN )LSB(rN )〉

=
N∑
i=1

N∑
j=1

∫
drNA(rN )

∂

∂ri
·Dij · exp

[
−βU(rN )

] ∂

∂rj

{
exp

[
βU(rN )

]
B(rN )Peq

}
= −

N∑
i=1

N∑
j=1

∫
drN

{
∂

∂ri
A(rN )

}
·Dij ·

{
∂

∂rj
B(rN )

}
Peq

= −
N∑
i=1

N∑
j=1

〈{
∂

∂ri
A(rN )

}
·Dij ·

∂

∂rj

{
B(rN )

}〉

We will now assum that Dij = D0δijI. Then since

∂

∂ri
n(q) = iqeiq·ri

we find ω(q) = D0q
2, and so

Ω(q) =
D0q

2

S(q)
(9.73)

In the simplest approximation we could neglect the memory function which gives

F (q, z) =
S(q)

z + Ω(q)

or
F (q, t) = S(q)e−D0q2/S(q)t
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Figure 9.10: Semilogarithmic plots of light scattering correlation functions against q2t for
polystyrene spheres of radius about 250 Å at number concentration n ≈ 2.2 × 1013cm−3

with the main peak in S(q) at qm = 2.04 × 1O5cm−1: I, q = 3.22 × 105cm−1(q > qm);
2, q = 2.12 × 105cm−1(q ≈ qm); 3, q = 0.89 × 105cm−1(q < qm); 4, ”free-particle” result
[equation (9.39)]; 5, data of curve 3 after subtraction of incoherent scattering

i.e an exponential decay but with an effective q-dependent diffusion constant D(q) =
D=/S(q). This approximation works very well to describe the short time dependence of
F . In particular in the low-density limit where S(q) = 1 it reduces to previous findings.

From measurements shown in fig. 9.10 we can extract the effective diffusion constant
from the initial slope of lnF and these data can then compared with experimental values
of S(q).

For the irreducible memory function we have the expression

M irr(q, t) = 〈n(q)∗LSQnR1(t)QnLSn(q)〉ω−1(q) (9.74)

A useful approximation for this memory function can be obtained if we assume that the
dominant contributions to the resolvent R1(t) comes from pairs of density fluctuations,
which move indepently from each other, i.e. we introduce the variables

A(k1, k2) = Qn [n(k1)n(k2)− 〈n(k1)n(k2)〉]

and make the approximation

R1(t) =
∫

dk1dk2

(2π)6
|A(k1, k2)〉S−1(k1)S−1(k2)F (k1, t)F (k2, t)S−1(k1)S−1(k2)〈A(k1, k2)|

When inserted into (9.74) we get the expression

M irr(q, t) =
D0

2n

∫
dk

(2π)3
v2(q, k)F (k, t)F (q − k) (9.75)

where the coupling coefficient v = 〈A(k1, k2)QnLSn(q)〉 can be evaluated as above and is
expressed in terms of the static structure factor

v(q, k) = q̂ · knc(k) + q̂ · (q − k)nc(q − k)
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where nc(q) = (S(q)− 1)/S(q) and q̂ = q/q.
Therefore knowing the static structure factor we have a closed set of equations for the

density correlation function which can be solved selfconsistently.

9.9 Colloidal glasses and gels

The self-consistent equations above have been used extensively to study the liquid-glass
transition in colloidal suspensions and molecular glasses. In the liquid state we expect the
particles to diffuse around and this eventually leads to F (q, t→∞) = 0, while in a glass
or disordered solid, the particles are trapped by surrounding particles and this leads to
F (q, t→∞) = S(q)f(q) > 0, or F (q, t) tends to a constant. We notice that if F tends to
a comnstant then also M irr tends to a constant, and since F (q, z) → S(q)f(q)/z, z → 0
and correspondingly for the memory function, the equation to determine the so called
non-ergodicity parameter f(q) becomes

f(q)
1− f(q)

=
S(q)
q2

1
2n

∫
dk

(2π)3
v2(q, k)S(k)S(q − k)f(k)f(q − k) (9.76)

This equation always have the trivial solution f(q) = 0, but there may also be nontrivial
solutions for some parameter values. For systems with a hard-sphere interaction we can
vary the packing fraction and solve the equation numerically. One then finds a glass
transition at a packing-fraction φG = 0.52 where there appears nontrivial solution for
f(q) and where the trivial solution becomes dynamically unstable.

The results for f(q) obtained from (9.76) has been compared with experimental results
for hard-sphere colloidal suspensions. The results are shown in fig. 9.11 and is plotted for
various packing fractions or separation parameters ε = φ−φG versus qR. The comparison
between the experimental data and the theoretical prediction is very good.

In fig. 9.12 we show corresponding values for the intermediate structure factor F (q, t)
at two wavevectors, compared with the selfconsistent solution of the mode-coupling equa-
tions. Clearly the theory is in agreement with the experimental results. The major feature
of the results is that when the packing fraction φ increases F (q, t) developes a plateau at
mesoscopic times. This plateau indicates an arrest of the particles and is a precursor of
the glassy state. For very high packing fractions φ > φG, F (q, t) seems to be constant up
to the experimental time-window.

The origin of the glass transition is a self-consistent feed back mechanism. Every
particle is to some extent trapped in a cage of surrounding particles, and this trapping
leads to an increase of the viscosity or M irr and thereby to a slowing down of F (q, t). This
in turn leads to an even slower decay of the cage around every particle, and therefore also
of M irr which again slows down F . This feedback can eventually lead to a trapping of the
particles by their surrounding particles and this leads to a glass-transition.

For hard sphere interactions the glass transition is due to the geometry of packing.
A system with an interaction potential with a hard core repulsion and an attractive part
shows a much richer phase diagram, and there is the possibility for other types of tran-
sitions like gelation. This mean that the glass transition switches from geometrical con-
straints to attraction and bonding constraints between colloidal particles.
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Figure 9.11: The nonergodicity parameters f(q) of hardsphere colIoidal glasses as func-
tions of volume fraction φ and scattering vector. Experimental data: squares, φ = 0.563,
separation parameter ε ≈ 0; triangles, φ = 0.597, ε = 0.060; circles, φ = 0.626, ε = 0.1l4;
stars, random-close-packed sample, φ ≈ 0.64, ε ≈ 0.14. The solid curves are the mode-
coupling predictions (9.76) for the perfect hard-sphere system at separation parameters
ε = 0 (lower curve) and ε = 0.066 (upper curve). The dashed curve is the Percus- Yevick
static structure factor for hard spheres at φ = O.563 reduced in magnitude by a factor of
10.

Figure 9.12: Intermediate scattering functions for two wave vectors [(a)-(b)] around the
structure factor peak. The symbols refer to the experimental data for suspension volume
fractions indicated in (a). The solid curves are the MCT fits to the data. The additional
curves in (b) are exp[−D0q

2t] (—–) and exp[−D(q)q2t] (—), where D0 is the free particle
diffusion coefficient and D(q) = D0/S(q) is the shorttime collective diffusion coefficient
for the colloidal fluid at freezing (φ = φF ) at qR = 3.42.
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Figure 9.13: Phase diagram in terms of the redueed temperature τ and the particle volume
fraction φ. The labeled lines are the bifurcation lines of eq. (9.76). The shaded region
enc1oses nonergodic density fluetuations. Liquid-glass transitions occur when crossing the
B1 and B2 lines into the shaded nonergodie region. Also included are data for the fluid-
solid freezing and melting lines (•). The arrows show the freezing (φF ) and melting (φM )
volume fractions for hard spheres.

In fig 9.13 we show the phase diagram for a potential with hard sticky spheres. Except
for the packing fraction there is now also an effective temperature τ which can be varied.
The surprising effect is that coming from high temperatures and a glassy state there is
the possibility of reentering the liquid state and then again at lower temperatures cross a
new glass transition line. This is shown by the lines B1 and B2 in the figure.

This predicted reentring gelation transition have been observed in light scattering and
is shown in fig. 9.14. The interaction in these experiments are varied by the addition
of free polymers which effectively induces an attractive interaction between the colloidal
particles.

The left part of fig. 9.14 shows the glass transition dynamics of a binary mixture
of crosslinked microgel colloids with a size ratio of Rsmall/Rlarge = 0.83 and a number
ratio Nsmall/Nlarge = 2.65 (corresponding to an effective polydispersity of 11 %). The
density autocorrelation functions f(q, t) at the peak of tbe static structure factor for
volume fractions φ = 0.581, 0.587, 0.592, 0.595, 0.6, 0.61 and 0.674 (from left to right) are
shown. The volume fraction scale was set by mapping tbe phase behaviour of the single
components to tbat of the hard sphere system. Data for samples corresponding to colloidal
glasses are indicated by thick solid lines, whereas thin solid lines refer to the ”supercooled”
liquid state. The dashed-dotted curves correspond to fits with results of mode coupling
tbeory. The glass transition volume fraction of 0.596 is found.

The right part of fig. 9.14 shows the effect on the dynamics of adding free poIymer to
a colloidal glass (φ = 0.615) of the binary mixture shown in left figure, demonstrating the
phenomenon of a re-entrant glass transition. The density autocorre1ation curves at the
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Figure 9.14: Intermediate scattering functions for colloidal suspension with and without
addition of polymers, as described in text.

Figure 9.15: Static structure factor for the colloidal solution with added polymers.

peak of the static structure factor of the pure binary mixture are shown. The polymer
concentrations in mg cm−3 (and corresponding packing fraction) increase(s) as indicated
by the numbers on the curves: 1, 0 (0); 2, 2.14 (0.11); 3,5.1 (0.26); 4, 11.3 (0.57); 5, 13.3
(0.67); 6, 14.8 (0.75). Thin solid lines indicate fluid samples, whereas thick solid lines
refer to glass states, as implied by the pIot of the intercept vaIues in the inset. Note the
differences in the evoIution of the line shapes of f(q, t) on approaching the poIymer-rich
and the polymer-poor glass. These imply different mechanisms of glassy freezing.

The evolution of the static structure factor of the glassy binary mixture at φ = 0.615
when switching on short range depIetion attraction by addition of free poIymer is shown
in fig. 9.15. The poIymer volume fractions in the free volume are (from top to bottom):
0, 0.11, 0.26, 0.57, 0.67. Note that the meIting of the colloidal glass seen in fig 9.14 is
accompanied by a rapid decrease in the peak maximum accompanied by a sIight shift
of the peak position to higher q. In contrast, the re-entrant glass transition appears to
be connected to a larger shift of the peak position accompanied by a peak broadening,
whereas the peak height seems to saturate. These differences can again be understood as
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indications of a change in the freezing mechanism on approaching the two different glass
states. The values of S(q) increases at small q-values when polymers are added indicating
increasing correlations on long length scales.


