
Chapter 8

The Kramers problem and first
passage times.

The Kramers problem is to find the rate at which a Brownian particle escapes from a
potential well over a potential barrier. One method of attack is based on the theory of
first passage times.

There are a variety of problems in chemical physics and biophysics where one wishes to
calculate the average time τ required for a particle, generated at some point and diffusing
under the influence of a potential, to reach and be bound to a certain target. Examples are
diffusion controlled interchain reactions in polymers, diffusion ligand binding to receptor
molecules and protein folding.

8.1 First passage times

Suppose that the motion of the set of variables a = (a1, a2, . . . , an) is governed by a
Langevin equation. In any single experiment it follows a specific path a(t) which wonders
through a-space. The initial point a0 starts out somewhere in a volume Ω in this space
bounded by a surface ∂Ω. The first passage time is the first time that the point leaves
Ω. Because of the noise repeated experiments, even with the same initial position lead
to different paths, and hence different first passage times. Our problem is to find the
distribution of first passage times and in particular the mean first passage time.

From the Langevin equation

d
dt

a(t) = V (a) + Ξ(t)

with the streaming term V and noise Ξ(t), we obtain the Fokker-Planck equation

∂

∂t
P (a, t|a0, t0) = − ∂

∂a
· [V (a)P (a, t|a0, t0)] +

∂

∂a
·D · ∂

∂a
P (a, t|a0, t0) (8.1)

Here 〈Ξ(t2)Ξ(t1)〉 = 2Dδ(t2 − t1) and D is a diffusion tensor.
If we focus on those paths that have not left Ω by time t, we must remove all paths

that have crossed the boundary of Ω before time t. This can be done by imposing an
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absorbibg boundary condition on ∂Ω. Then

P (a, t0|a0, t0) = δ(a− a0)
P (a, t|a0, t0) = 0 on ∂Ω

We can call the Fokker-Planck operator LFP i.e.

∂

∂t
P = −LFPP

with
LFP =

∂

∂a
· V (a)− ∂

∂a
·D · ∂

∂a

and the formal solution

P (a, t|a0, t0) = e−LFP (t−t0)δ(a− a0)

Due to the absorbing boundary condition on ∂Ω we have

P (a, t→∞|a0, t0) = 0

The probability that the Brownian particle is still in Ω at time t can be written as

G(t|a0, t0) =
∫

Ω
daP (a, t|a0, t0)

This is also the probability that the first passage time from a0 to ∂Ω is larger than t

G(t|a0, 0) = Pr{τ > t} =
∫ ∞
t

%(τ |a0)dτ

where %(τ) is the probability density for the first passage time. This gives

%(τ |a0) = − ∂

∂τ
G(τ |a0, 0) (8.2)

The mean first passage time is the first moment of τ

〈τ(a0)〉 =
∫ ∞

0
dτ τ%(τ |a0)

Then using (8.2) we find

〈τ(a0)〉 = −
∫ ∞

0
dτ τ

∂

∂τ
G(τ |a0, 0) =

∫ ∞
0

dτ G(τ |a0, 0) =
∫ ∞

0
dτ
∫

Ω
daP (a, τ |a0, 0)

(8.3)
From the Chapman-Kolmogorov equation

P (a1, t1|a0, t0) =
∫

daP (a1, t1|a, t)P (a, t|a0, t0)

where t0 < t < t1 we find by taking the derivative with repsect to t∫
da

∂

∂t
P (a1, t1|a, t)P (a, t|a0, t0) +

∫
daP (a1, t1|a, t)

∂

∂t
P (a, t|a0, t0) = 0
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or ∫
da

∂

∂t
P (a1, t1|a, t)P (a, t|a0, t0)−

∫
daP (a1, t1|a, t)LFPP (a, t|a0, t0)

=
∫

da

[
∂

∂t
P (a1, t1|a, t)− L†FPP (a1, t1|a, t)

]
P (a, t|a0, t0)

i.e we have the adjoint equation

∂

∂t
P (a1, t1|a, t)− L†FPP (a1, t1|a, t) = 0

where the adjoint operator is

L† = −V (a) · ∂
∂a
− ∂

∂a
·D · ∂

∂a

and operates on the variable a.
We can now find a differential equation for the mean first passage time. If we operate

with the adjoint operator in (8.3) we find

L†FP 〈τ(a0)〉 =
∫ ∞

0
dτ
∫

Ω
daL†FPP (a, τ |a0, 0) =

∫ ∞
0

dτ
∫

Ω
da

(
∂

∂t0
P (a, τ |a0, t0)

)
t0=0

= −
∫ ∞

0
dτ
∫

Ω
da

∂

∂τ
P (a, τ |a0, 0) = 1

where we used the stationary condition P (a, t|a0, t0) = P (a, t − t0|a0, 0). Therefore, the
differential equation for the mean first passage time is

V (a) · ∂
∂a
〈τ(a)〉+

∂

∂a
·D · ∂

∂a
〈τ(a)〉 = −1 (8.4)

This must be solved with the boundary condition

〈τ(a)〉 = 0 on ∂Ω

Similarly we can find a differential equation for the function G(t|a0, t0) by using the
adjoint equation

∂

∂t
G(t|a0, t0) =

∫
Ω

da
∂

∂t
P (a, t|a0, t0) = −

∫
Ω

da
∂

∂t0
P (a, t|a0, t0)

= −
∫

Ω
daL†FPP (a, t|a0, t0) = −L†FPG(t|a0, t0)

or
∂

∂t
G(t|a, 0) = V (a) · ∂

∂a
G(t|a, 0) +

∂

∂a
·D · ∂

∂a
G(t|a, 0)

From here we immediately get an equation for the first passage time probability density
%(τ |a0).
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Figure 8.1: Potential energy as a function of reaction coordinate in two typical cases, A
is a potential with two minima, and B is a potential that allows escape from sa single
minimum.

8.2 The Kramers problem

The Kramers problem is to determine the rate at which a Brownian particle escapes from
a potential well. Two typical situations are shown in fig. 8.1. In case A the system can
be either in an equilibrium state of lowest energy or in a metastable state which is a local
minimum in energy as a function of some coordinate x, but not the absolute minimum
in energy. When the temperature is low (compared to the barrier height), the particle
will spend a lot of time near the potential minimum where it started, and only rarely will
Brownian motion take it to the top of the barrier. Once there the particle is equally likely
to fall to either side of the barrier. If it goes to the right-hand side in fig. 8.1 it will fall
rapidly to the other minimum stay there for a while and then perhaps cross back to the
original minimum. In case B it will not return.

An example of these situations is the description of a chemical reaction. State A in fig.
8.2 corresponds to the unreacted products and state C to the reacted products. For this
reason it is common to call x a generalized reaction coordinate. In order for the reaction
to cross a barrier at xB with energy difference E+

b = UB − UA compared to the unstable
state A and E−b = UB − UC compared to the stable state C. Since E+

b < E−b we expect
the rate k− with which the system crosses the barrier from A to C to be larger than the
rate k+ for the reverse process.

Kramers modeled this problem using the one dimensional model

dx
dt

= v

m
dx
dt

= −γv + F (x) + ξ(t) (8.5)

where F (x) = −U ′(x) is the force excerted on the Brownian particle in the external
potential U(x). The time development of the reaction coordinate is therefore modeled as
the Brownian motion of a particle in an external potential.

Contrary to the free Brownian motion problem the Kramers problem has more than
one inherent time-scale:

i) the equilibration time τT within one of the minima: this is the time after which an
ensemble of systems started for instance at xA, has assumed the Maxwell-Boltzmann
equilibrium distribution corresponding to an infinite barrier at xB.
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Figure 8.2: Schematic representation of a bistable potential governing diffusive barrier
crossing.

ii) the escape time τe: this is the mean time a Brownian particle will need to go from A
to C. There is a corresponding time for going from C to A.

When τs is a typical scale for the fast degrees of freedom, we require the following
inequalities

τs � τT � τe

The second inequality is the basis for calling the barrier crossing thermally activated. On
a timescale τT the reaction coordinate has reached thermal equilibrium with the bath
variables, and it is the thermal fluctuations of these variables that create the stochastic
forces which finally drive the system over the barrier.

To be consistent with the last inequality of the time scales, we have to assume that

kBT � E+
b < E−b

which means that the mean thermal energy of the Brownian particle has to be much smaller
than the barrier height. If it were larger than the barrier height the Brownian particle
would diffuse more or less freely from A to C and back, and if it were of comparable height
the timescales for equilibration and escape would not be clearly separated.

There is one more set of competing time scales contained in (8.5). The time-scale
for the coupling to the bath coordinates is set by the kinematic friction γ/m. Without
the coupling to the bath the particle would perform a Newtonian motion in the external
potential U . When the particle has a total energy smaller than the barrier, it performs
oscillations around either A or B with typical frequencies

ωa =

√
U ′′(xa)
m

, ωc =

√
U ′′(xc)
m

When the particle has a total energy larger than the barrier, however, there is a time scale
for the exchange between kinetic and potential energy during the barrier crossing. This
time scale is given by

ωb =

√
U ′′(xb)
m
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We can now distinguish two different regimes

i) strong friction γ
m � ωb

ii) weak friction γ
m � ωb

In the strong friction region m/γ → 0 we can neglect the inertial term in (8.5) and obtain

dx
dt

=
1
γ
F (x) +

1
γ
ξ(t)

Then for this case
V (x) =

1
γ
F (x), D =

kBT

γ
.

The corresponding Fokker-Planck equation is the Smoluchovski equation

∂

∂t
P (x, t|x0, 0) = − ∂

∂x

(
1
γ
F (x)P (x, t|x0, 0)

)
+D

∂2

∂x2
P (x, t|x0, 0) (8.6)

The average first passage time satisfies the equation

1
γ
F (x)

d
dx
〈τ(x)〉+D

d2

dx2
〈τ(x)〉 = −1

Using F (x) = −U ′(x) and multiply with the integrating factor exp(−βU), where β =
1/kBT we have(

d
dx

e−βU(x)

)
d

dx
〈τ(x)〉+ e−βU(x) d2

dx2
〈τ(x)〉 = − 1

D
e−βU(x)

or
d

dx

[
e−βU(x) d

dx
〈τ(x)〉

]
= − 1

D
e−βU(x)

Integrating from −∞ to x this gives

d
dx
〈τ(x)〉 = − 1

D
eβU(x)

∫ x

−∞
dze−βU(z)

Finally integrating from xa to x using 〈τ(xa)〉 = 0 we find

〈τ(x)〉 =
1
D

∫ x

xa

dy eβU(y)

∫ y

−∞
dze−βU(z)

In the first integral the integrand is largest around xb and we expand the external
potential around this point

U(y) = Ub −
1
2
mω2

b (y − xb)2

In the second integral the integrand is largest around xa and

U(z) = Ua +
1
2
mω2

a(z − xa)2
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Since the integrands decays rapidly with y and z we can replace the lower limit of in-
tegration in the first integral with −∞, and the upper limit in both integrals with ∞.
Then

〈τA→C〉 =
1
D

∫ ∞
−∞

dy eβUbe−
β
2
mω2

b (y−xb)2
∫ ∞
−∞

dze−βUae−
β
2
mω2

a(z−xa)2 =
1
D

2πkBT

mωaωb
eβE

+
b

For the traqnsition rate from A to B we obtain

kCA =
1

〈τA→C〉
=
mωaωb

2πγ
e−E

+
b /kBT (8.7)

This is Kramers result for the reaction rate. The reaction rate from C to A folow similarly.

8.3 Intrachain reaction of polymers

Consider the diffusion controlled interchain reaction of a polymer with two reactive groups
attached at the ends. The simplest description of the dynamics of the end-to-end distance
of the polymer is to liken its time development to a diffusion under the influence of a
potential.

Assuming that the reaction occurs with a certain rate whenever the ends are sufficiently
close, one would typically like to know the fraction of unreacted molecules at time t and
the average time needed for the ends to collide for the first time.

The quantity of interest is G(t) the fraction of polymers yet unreacted at time t. Here

G(t) =
∫

dr0G(t|r0)Peq(r0)

where Peq(r0) is the equilibrium distribution for the intial ened-to-end distance, i.e. we
assume that we nitially have a distribution of end-to-end distances given by Peq. We
assume that the dynamics of the end-to-end distance r is described by a Smoluchowski
type equation. In the harmonic spring model for a d-dimensional polymer the potential is

U(r) =
dr2

2βb2

where b is the mean distance between the polymer ends, i.e. b2 = 〈r2〉. The corresponding
equilibrium end-to-end distribution is

Peq(r) = Crd−1e−dr
2/2b2

representing a Gaussian chain.
Let’s for simplicity consider a one-dimensional chain. The Smoluchowski equation for

this problem is
∂

∂t
P (x, t|x00) = D

[
∂2

∂x2
+

1
b2

∂

∂x
x

]
P (x, t|x0, 0) (8.8)

We assume that the reaction takes place when the ends touch for x = 0 where

P (0, t|x0, 0) = 0
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The normalized equilibrium distribution for the chain without reaction is

Peq(x) =
(

2
πb2

)1/2

e−x
2/2b2 , x > 0

The solution to (8.8) in the absence of any reaction is

P0(x, t|x00) =
(

1
2πb2σ2(t)

)1/2

exp

(
−(x− x0e−Dt/b

2
)2

2b2σ2(t)

)

where
σ2(t) = 1− e−2Dt/b2

The Green function satisfying the boundary condition at x = 0 can be obtained by the
method of images

P (x, t|x00) = P0(x, t|x00)− P0(x, t| − x00)

The reaction rate is then

− ∂

∂t
G(t|x0) = −

∫ ∞
0

dx
∂

∂t
P (x, t|x00) = D

[
∂

∂x
P (x, t|x0, 0)

]
x=0

=
2Dx0e−Dt/b

2

b2σ2(t)(2πb2σ2(t))1/2
exp

(
−x

2
0e−2Dt/b2

2b2σ2(t)

)

Averaging over Peq(x), x > 0 yields

− ∂

∂t
G(t|x0) = − 2De−Dt/b

2

π
[
1− e−2Dt/b2

]1/2
Integrating this expression with initial condition G(0) = 1 gives finally

G(t) =
2
π

arcsin e−Dt/b
2

From this expression we can calculate the mean first passage time.


