
Chapter 7

Brownian Motion: Fokker-Planck
Equation

The Fokker-Planck equation is the equation governing the time evolution of the probability
density of the Brownian particla. It is a second order differential equation and is exact
for the case when the noise acting on the Brownian particle is Gaussian white noise. A
general Fokker-Planck equation can be derived from the Chapman-Kolmogorov equation,
but we also like to find the Fokker-Planck equation corresponding to the time dependence
given by a Langevin equation.

The derivation of the Fokker-Planck equation is a two step process. We first derive
the equation of motion for the probability density 4/varrho(x, v, t)4 to find the Brownian
particle in the interval (x, x+dx) and (v, v+dv) at time t for one realization of the random
force ξ(t). We then obtain an equation for

P (x, v, t) = 〈%(x, v, t)〉ξ

i.e. the average of %(x, v, t) over many realizations of the random force. The probability
density P (x, v, t) is the macroscopically observed probability density for the Brownian
particel.

7.1 Probability flow in phase-space

Let us obtain the probability to find the Brownian particle in the interval (x, x+ dx and
(v, v + dv) at time t. We will consider the space of coordiantes x = (x, v). The Brownian
particle is located in the infinitesimal ara dxdv with probablity %(x, v, t)dxdv. The velocity
of the particle at point (x, v) is given by ẋ = (ẋ, v̇) and the current density is ẋ%. Since
the Brownian particle must lie somewhere in the phase-space −∞ < x < ∞,∞< v < ∞
we have the condition ∫ ∞

−∞
dx
∫ ∞
−∞

dv%(x, v, t) = 1

Let us now consider a finite area, or volume, V0 in this space. Since the Brownian particle
cannot be destroyed a change in the probability contained in V0 must be due to a flow of
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90 Chapter 7 Brownian Motion: Fokker-Planck Equation

probability through the surface S0 surrounding V0. Thus

d
dt

∫ ∫
V0

dxdv%(x, v, t) = −
∫
S0

%(x, v, t)ẋ · dS

We can now use Gauss theorem to change the surface integral into a volume integral.∫ ∫
V0

dxdv
∂

∂t
%(x, v, t) = −

∫ ∫
V0

dxdv∇ · (ẋ%(x, v, t))

Since V0 is fixed and arbitrary we find the continuity equation

∂

∂t
%(x, v, t) = −∇ · (ẋ%(x, v, t)) = − ∂

∂x
(ẋ%(x, v, t))− ∂

∂v
(v̇%(x, v, t)) (7.1)

This is the continuity equation in phase-space which just state that probability is con-
served.

7.2 Probability flow for Brownian particle

In order to write (7.1) explicitly for a Brownian particle we must know the Langevin
equation governing the evolution of the particle. For a particle moving in the presence of
a potnetial V (x) the Langevin equations are

dx
dt

= v

dv
dt

= − γ
m
v +

1
m
F (x) +

1
m
ξ(t) (7.2)

where the force F (x) = −V ′(x). Inserting (7.2) into (7.1) gives

∂

∂t
%(x, v, t) = − ∂

∂x
(v%(x, v, t)) +

γ

m

∂

∂v
(v%(x, v, t))− 1

m
F (x)

∂

∂v
%(x, v, t)

− 1
m
ξ(t)

∂

∂v
%(x, v, t) = −L0%(x, v, t)− L1(t)%(x, v, t)

where the differential operators L0 and L1 are defined as

L0 = v
∂

∂x
− γ

m
− γ

m
v
∂

∂v
+

1
m
F (x)

∂

∂v

L1 =
1
m
ξ(t)

∂

∂v

Since ξ(t) is a stochastic variable the time evolution of % will be different for each realization
of ξ(t). However when we observe an actual Brownian particle we are observing the average
effect of the random force on it. Therefore we introduce an observable probability density
P (x, v, t) = 〈ξ(t)〉ξ.

Let
%(t) = e−L0tσ(t)

then
∂

∂t
σ(x, v, t) = −e−L0tL1(t)e−L0tσ(x, v, t) = −V (t)σ(x, v, t)
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This equation has the formal solution

σ(t) = exp
[
−
∫ t

0
dt′V (t′)

]
σ(0)

which follows since formally

σ(t) = σ(0)−
∫ t

0
dt1V (t1)σ(t1) = σ(0)−

∫ t

0
dt1V (t1)σ(0) +

∫ t

0
dt1
∫ t1

0
dt2V (t1)V (t2)σ(0) + . . .

+ (−1)n
∫ t

0
dt1
∫ t1

0
dt2 · · ·

∫ tn

0
dtn−1V (t1)V (t2) . . . V (tn−1)σ(0) + . . .

=
∞∑
n=0

(−1)n

n!

[∫ t

0
dt1V (t1)

]n
σ(0) = exp

[
−
∫ t

0
dt′V (t′)

]
σ(0)

The third step follows since by changing the order of integration and then varibles∫ t

0
dt1
∫ t1

0
dt2V (t1)V (t2) =

∫ t

0
dt2
∫ t

t2

dt1V (t1)V (t2) =
∫ t

0
dt1
∫ t

t1

dt2V (t1)V (t2)

so that ∫ t

0
dt1
∫ t1

0
dt2V (t1)V (t2) =

1
2

[∫ t

0
dt1V (t1)

]2

Also assume that∫ t

0
dt1
∫ t1

0
dt2 · · ·

∫ tn

0
dtn−1V (t1)V (t2) . . . V (tn−1) =

1
n!

[∫ t

0
dt1V (t1)

]n
(7.3)

then by taking the derivative

d
dt

∫ t

0
dt1
∫ t1

0
dt2 · · ·

∫ tn+1

0
dtnV (t1)V (t2) . . . V (tn)

= V (t)
∫ t

0
dt2
∫ t2

0
dt3 · · ·

∫ tn

0
dtn+1V (t1)V (t2) . . . V (tn)

= V (t)
1
n!

[∫ t

0
dt1V (t1)

]n
=

d
dt

1
(n+ 1)!

[∫ t

0
dt1V (t1)

]n+1

By induction it therefore follows that (7.3) holds. Taking the average 〈· · ·〉ξ over the
Gaussian noice ξ(t) we see that 〈σ(t)〉ξ is the characteristic function of the random variable
X(t) = i

∫ t
0 dt1V (t1). This must again be a Gaussian variable with 〈X(t)〉ξ = 0 and the

variance is

〈X(t)2〉 =
1
2

∫ t

0
dt1
∫ t

0
dt2〈V (t1)V (t2)〉

Since the characteristic function for the Gaussian variableX(t) is exp (iX(t)) = exp
(
iµX − 〈X(t)2〉/2

)
we find

〈σ(t)〉ξ = exp
(

1
2

∫ t

0
dt1
∫ t

0
dt2〈V (t1)V (t2)〉

)
σ(0) (7.4)
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This formula is just a special case of a cumulant expansion. The integral in (7.4) becomes

1
2

∫ t

0
dt1
∫ t

0
dt2〈V (t1)V (t2)〉ξ =

1
2

∫ t

0
dt1
∫ t

0
dt2〈eL0t1 1

m
ξ(t1)

∂

∂v
e−L0t1eL0t2 1

m
ξ(t2)

∂

∂v
e−L0t2〉ξ

=
g

2m2

∫ t

0
dt1eL0t1 ∂

2

∂v2
e−L0t1

Then
∂

∂t
〈σ(x, v, t)〉ξ =

g

2m2
eL0t ∂

2

∂v2
e−L0t〈σ(x, v, t)〉ξ

This gives for 〈%(x, v, t)〉ξ

∂

∂t
〈%(x, v, t)〉ξ = −L0〈%(x, v, t)〉ξ +

g

2m2

∂2

∂v2
〈%(x, v, t)〉ξ

and for the probability distribution

∂

∂t
P (x, v, t) = −v ∂

∂x
P (x, v, t)− ∂

∂v

[(
γ

m
v − 1

m
F (x)

)
P (x, v, t)

]
+

g

2m2

∂2

∂v2
P (x, v, t)

(7.5)
This is the Fokker-Planck equation for the probability Pdxdv to find the Brownian

particle in the interval (x, x+ dx, (v, v + dv) at time t.
We can write the Fokker-Planck equation as a continuity equation

∂

∂t
P (x, v, t) = −∇ · j

where ∇ = ex∂/∂x+ ev∂/∂v and the probability current is

j = exvP − ev

[(
γ

m
v − 1

m
F (x)

)
P +

g

2m2

∂

∂v
P

]

7.3 General Fokker-Planck equation

We can obtain the Fokker-Planck equation for a quite general Langevin equation for the
dynamics of a set of fluctuating variables

a = {a1, a2, . . .}

We assume a general friction term νj(a1, a2, . . .) = νj(a) and assume a Gaussian noise
ξj(t) where

〈ξj(t)〉 = 0
〈ξi(t2)ξj(t1)〉 = gijδ(t2 − t1)

The Langevin equation becomes

d
dt
aj(t) = νj(a) + ξj(t)
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or in vector form
d
dt

a(t) = ν(a) + ξ(t)

We ask for the probability distribution

P (a, t) = 〈%(a, t)〉ξ

Again from conservation of probability

∂

∂t
%(a, t) +

∂

∂a
·
[

da

dt
%(a, t)

]
= 0

Usin the Langevin equation to solve for da/dt we find

∂

∂t
%(a, t) =

∂

∂a
· (ν(a)%(a, t))− ∂

∂a
· (ξ(t)%(a, t)) = − [L0 + L1(t)] %(a, t)

where

L0 =
(
∂

∂a
· ν(a)

)
+ ν(a) · ∂

∂a

L1(t) = ξ(t) · ∂
∂a

Following the steps as above we find

∂

∂t
P (a, t) = − ∂

∂a
· (ν(a)P (a, t)) +

1
2
∂

∂a
· g · ∂

∂a
P (a, t) (7.6)

Here g is a tensor with elements gij .

Example

Our previous result can be obtained as a special case of (7.6). The Langevin equations are

dx
dt

= v

dv
dt

= − γ
m
v +

1
m
F (x) +

1
m
ξ(t)

where
〈ξ(t2)ξ(t1)〉 = 2γkBTδ(t2 − t1)

Then

a =
(
x
y

)
, ν(a) =

(
v

− γ
mv + 1

mF (x)

)
ξ(t) =

(
0

1
mξ(t)

)
, g =

(
0 0
0 2γkBT

m2

)
The Fokker-Planck equation becomes

∂

∂t
P (x, v, t) = − ∂

∂x
[vP (x, v, t)]− ∂

∂v

[(
− γ
m
v +

1
m
F (x)

)
P (x, v, t)

]
+
γkBT

m2

∂2

∂v2
P (x, v, t)
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The equilibrium distribution ∂/∂tP (x, v, t) = 0 is the solution to

− ∂

∂x
[vP (x, v, t)]− ∂

∂v

[(
− γ
m
v +

1
m
F (x)

)
P (x, v, t)

]
+
γkBT

m2

∂2

∂v2
P (x, v, t) = 0

The Hamiltonian of the Brownian particle is

H =
1
2
mv2 + V (x)

i.e we can write the equilibrium condition as

− ∂

∂x

[
∂H

∂v
P (x, v, t)

]
+

1
m

∂

∂v

[
∂H

∂x
P (x, v, t)

]
+
γ

m

∂

∂v

[
∂H

∂v
P (x, v, t) +

kBT

m

∂

∂v
P (x, v, t)

]
= 0

Assuming that
P = f(H)

we find

− ∂

∂x

[
∂H

∂v
f(H)

]
+

1
m

∂

∂v

[
∂H

∂x
f(H)

]
+
γ

m

∂H

∂v

[
∂H

∂v
f(H) +

kBT

m

∂H

∂v
f ′(H)

]
= 0

This equation is satisfied if

∂2H

∂x∂v
= 0

f(H) + kBTf
′(H) = 0

with the solution
f(h) =

1
Z

e−βH , β =
1

kBT

The Fokker-Planck equation is therefore consistent with a Boltzmann equilibrium distri-
bution.

7.4 Averages and adjoint operators

Sometimes we want the full solution of a Fokker-Planck equation, but sometimes we are
interested only in certain averages. These can be found by two distinct but equivalent
procedures analogous to the Schrödinger- Heisenberg duality in quantum mechanics.

First we can follow the evolution of some initial state P (a, 0) by solving the Fokker-
Planck equation

∂

∂t
P (a, t) = −LP (a, t)

where the operator L is given by

L =
∂

∂a
· v(a)− ∂

∂a
·D · ∂

∂a

with v a streaming term and D a diffusion tensor. The Fokker-Planck equation has the
formal operator solution

P (a, t) = e−LtP (a, 0)
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This can be used to obtain the average of any dynamical property A(a)

〈A(t)〉 =
∫

daA(a)P (a, t) =
∫

daA(a)e−LtP (a, 0) (7.7)

We introduce the adjoint operator L† defined by∫
daφ∗(a)Lψ(a) =

(∫
daψ∗(a)L†φ(a)

)∗
or 〈φ|Lψ〉 = 〈L†φ|ψ〉∗. By partial integration we find

L† = −v(a) · ∂
∂a
− ∂

∂a
·D · ∂

∂a

The average in (7.7) can be obtained by partial integration

〈A(t)〉 =
∫

daA(a)e−LtP (a, 0) =
∞∑
n=0

(−t)n

n!

∫
daA(a)LnP (a, 0)

=
∞∑
n=0

(−t)n

n!

∫
da
[
(L†)nA(a)

]
P (a, 0) =

∫
da
[
e−L

†tA(a)
]
P (a, 0)

This defines the time-dependent variable

A(a, t) = e−L
†tA(a)

The equation of motion for the dynamical variable A(a, t) becomes

∂

∂t
A(a, t) = −L†A(a, t) =

(
−v(a) · ∂

∂a
− ∂

∂a
·D · ∂

∂a

)
A(a, t) (7.8)

7.5 Green’s function

A formal solution of the Fokker-Planck equation uses the operator e−Lt. A somewhat
more explicit solution uses the Green’s function G(a, t|a0)

P (a, t) =
∫

da0G(a, t)P (a0, 0)

The Green’s function is the conditional probability to find the systems in state a at time
t when is started at a0 at time t = 0. It satisfies the equation

∂

∂t
G(a, t|a0) = −LG(a, t|a0)

G(a, 0|a0) = δ(a− a0)

When the streaming term v(a) is linear in a

v(a) = C · a
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and the diffusion tensor D is constant independent of a, the Green function can be found
explicitly by the Fourier transform

Ĝ(k, t|a0) =
∫

daeik·aG(a, t|a0)

Then
∂

∂t
Ĝ(k, t|a0) = k ·C · ∂

∂k
Ĝ(k, t|a0)− k ·D · kĜ(k, t|a0)

which follows since a derivatives of a gives a factor −ik and multiplication by a gives a
derivative with repsect ot . Dividing by Ĝ(k, t|a0) gives

∂

∂t
ln Ĝ(k, t|a0) = k ·C · ∂

∂k
ln Ĝ(k, t|a0)− k ·D · k

If we make the Gaussian ansatz

ln Ĝ(k, t|a0) = im(t) · k − 1
2

k · S(t) · k

with the unknown vector m(t) and tensor S(t) we find

i
d
dt

m(t) · k− 1
2

k · d
dt

S(t) · k = ik ·C ·m(t)− 1
2

k ·C · S(t) · k− 1
2

k · S(t) ·CT · k− k ·D · k

Identifying equal powers of k this gives

d
dt

m(t) = C ·m(t)

d
dt

S(t) = C · S(t) + S(t) ·CT + 2D (7.9)

From the initial value ln Ĝ(k, 0|a0) = ik · a0 we find

m(0) = a0, S(0) = 0

The solution to (7.9) can then be written

m(t) = eCt · a0 (7.10)

S(t) = 2
∫ t

0
dseC(t−s)t ·D · eC

T
(t−s)t (7.11)

which one can easily verify by substitution. These quantities have a simple interpretation
in terms of averages and mean squared fluctuations since(

∂

∂k
Ĝ(k, t|a0)

)
k=0

=
∫

daiaG(a, t|a0) = i〈a〉 = im(t)

and (
∂

∂k

∂

∂k
Ĝ(k, t|a0)

)
k=0

= −
∫

daaaG(a, t|a0) = −〈aa〉 = −m(t)m(t)− S(t)
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and
S(t) = 〈aa〉 − 〈a〉〈a〉 = 〈[a− 〈a〉] [a− 〈a〉]〉

Since G(k, t|a0) is a Gaussian the inverse transform also give a Gaussian and follows the
same lines as we did before in connection with the multivariate Gaussian distribution and
we find

G(a, t|a0) =
[

1
2πdetS(t)

=
]1/2

exp
(
−1

2
[a−m(t)] · S−1(t) · [a−m(t)]

)
(7.12)

7.6 Examples

Free Brownian particle

For a free Brownian particle we have the Langevin equation

m
dv
dt

= −γv + ξ(t)

Then with vector notation

aev, v(a) = − γ
m
vev, Ξ =

1
m
ξ(t)ev, g =

2γkBT

m2
I

The general Fokker-Planck equation (7.6)

∂

∂t
P (a, t) = − ∂

∂a
· (ν(a)P (a, t)) +

1
2
∂

∂a
·D · ∂

∂a
P (a, t)

becomes
∂

∂t
P (v, t) = − ∂

∂v

(
− γ
m
vP (v, t)

)
+
γkBT

m2

∂2

∂v2
P (v, t) (7.13)

This is a linear equation and we can directly obtain the solution for the Green function
from (7.12). The moments are obtained from (7.11) with C = −γ/mI. Therefore

m(t) = eCt · v0ev = e−t/τBv0ev = m(t)ev, τB =
m

γ

Also

S(t) = 2
∫ t

0
dseC(t−s)·D·eC

T
(t−s)t = 2

∫ t

0
dse−2(t−s)/τB γkBT

m2
I =

kBT

m
I
[
1− e−2t/τB

]
= S(t)I

The Green function is then

G(v, t|v0) =
[

1
2πS(t)

]1/2

exp
(
−(v −m(t))2

2S(t)

)
=

√
βm

2π
[
1− e−2t/τB

] exp

(
−βm

2

(
v − v0e−t/τB

)2[
1− e−2t/τB

] )

We see that

G(v, t|v0)→
(
βm

2π

)1/2

e−βmv
2/2, t→∞

i.e a Maxwell-Boltzmann distribution as expected.
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Diffusion controlled reactions

The rate of chemical reactions in condensed phases is often determined by the rate at
which the reacting species get close enough together to react. Once they get within some
critical distance of each other, the making and breaking of chemical bonds takes place
rapidly. The process by which the reactive particles reach that critical distance is the
brownian motion of the particles themselves. Such reactions are called diffusion controlled
reactions since the diffusive Brownian motion of the species is the rate determining step.

There are two reacting species A and B in solution. At first we consider B to be
stationary and species A to diffuse with diffusion constant DA. When an A particle comes
within a distance R of a B particle the particles react and effectively disappear from the
problem. For simplicity the particles are assumed to be spherical. We also assume that
there are no forces between A and B when they are farther apart than R.

Let the concentration of A and B particles be nA and nB respectively. The rate at
which A particles disappear is then nB times the flux of A particles across the sphere of
radius R surrounding a B particle. If j be the current density of A particles we have

rate = −nB
∫

j · dS = 4πR2nBjr(R, t)

where jr is the radial component of j. The integration is over the surface of a sphere of
radius R about the stationary B particle, and the current j is supposd not to vary on the
surface S.

The current is given by Ficks law

j = −DA∇nA

and the continuity equation for nA leads to the diffusion equation

∂nA
∂t

= DA∇2nA = DA
1
r2

∂

∂r

(
r2
∂nA
∂r

)
In the last step we have expressed the Laplacian in terms of spherical coordinates and
used the spherical symmetry in the problem. The initial and boundary conditions are

nA(r, t = 0) = n0
A

nA(r, t) → n0
A, r →∞

nA(R, t) = 0, r = R

The second condition requires that the concentration very far from the sink (B particle)
is not perturbed by the sink. The last condition insures that the sphere of radius R is a
sink. At r = R the A particle reacts and it is then no longer an A particle.

We define a new function

nA(r, t) =
u(r, t)
r

then

r2
∂nA
∂r

= −u(r, t) + r
∂

∂r
u(r, t)
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and so u(r, t) satisfies the simple diffusion equation

∂

∂t
u(r, t) = DA

∂2

∂r2
u(r, t) (7.14)

and the boundary conditions are

u(r, t) → n0
Ar r →∞

u(R, t) = 0

The solution to (7.15) with the initial condition U(r, 0) = n0
Ar, r > R is

u(r, t) =
∫ ∞
R

dr′G(r, t|r′, 0)n0
Ar
′

where the Green functionG satisfies (7.14) with a δ(r− r′) initial condition and boundary
condition

G(R, t|r′) = 0

For a homogeneous medium the diffusion equation has the solution

G0(r, t|r′, 0) =
(

1
4πDt

)1/2

e−(r−r ′)2/2Dt

To satisfy the boundary condition we introduce a mirror source in = s and choose s so
that the boundary condition is satisfied, i.e.

G(r, t|r′, 0) = G0(r, t|r′, 0)−G0(r, t|s, 0)

Then G(R, t|r ′, 0) = 0 provided

(R− r′)2 = (R− s)2, ⇒ s =
{

r ′
2R− r ′

Therefore the Green-function which satisfies the boundary condition at r = R is

G(r, t|r′, 0) =
(

1
4πDt

)1/2 [
e−(r−r′)2/2Dt − e−(r+r′−2R)2/2Dt

]
The solution for the density of A particles nA(r, t) in the region r > R therefore becomes

nA(r, t) =
n0
A

r

(
1

4πDt

)1/2 ∫ ∞
R

dr′
[
e−(r−r′)2/2Dt − e−(r+r′−2R)2/2Dt

]
r′

Then by a change of variables

nA(r, t) =
n0
A√

2πr

[∫
−∞

r−R√
2Dt dξe−ξ

2
(
r −
√

2Dtξ
)
−
∫

r −R√
2Dt

∞
dξe−ξ

2
(√

2Dtξ + 2R− r
)]

= n0
A

[
1− 2R

r

1√
2π

∫
r −R√

2Dt

∞
dξe−ξ

2

]
= n0

A

[
1− R

r
+
R

r

2√
2π

∫
0

r−R√
2Dt dξe−ξ

2

]
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The radial component of the current for particle A then becomes

jr(r, t) = −DA
∂

∂r
nA(r, t) = −DAn

0
A

[
R

r2
+
R

r

1√
πDt

e−(r−R)2/2Dt − R

r2
2√
2π

∫
0

r−R√
2Dt dξe−ξ

2

]
and so

jr(R, t)−DAn
0
A

[
R

+
1√
πDt

]
This gives the rate

rate = DAnAnB4πR
[
R

+
1√
πDt

]
= kABnAnB

with the rate constant

kAB = DA4πR
[
R

+
1√
πDt

]
The time dependent correction is of little interest experimentally.

In reality the B particles move around just as do the A particles. We can take account
of this motion by replacing DA with DA +DB. Then wth the Stokes-Einstein relation

Di =
kBT

6πηRi

we find

kAB = 4πR(DA +DB) =
2kBT

3η
(RA +RB)2

RARB


