
Chapter 4

Stochastic Processes

4.1 Definition

In the previous chapter we studied random variables as functions on a sample space
X(ω), ω ∈ Ω, without regard to how these might depend on parameters. We now want to
study more complicated situations in which probability can evolve with time. This defines
a stochastic process or random process.

Recall that a random variable is a function defined on the sample space, it assigns
a number to an event X(ω) ∈ R. A stochastic process is a family of random variables
depending on a real parameter, i.e. a stochastic process is a function of two varaiables,
one which is a point in the sample space, the other which is a real variable usually the
time.

There are three equivalent ways to look on a stochastic process.

i) as a function of two variables X(ω, t) where ω ∈ Ω and t denotes time.

ii) for a fixed value of t, X is a random variable. For each t it is a different random
variable; we can regard X as a family of random variables indexed by the variable t.

iii) we may also consider X as a family of functions of t one for each fixed ω. X(t) for a
fixed ω is called a realization or sample function of the process.

The parameter t above can belong to the real line or belong to some countable subset such
as the integers, i.e. be a discrete parameter. In most applications t denotes time.

Example 4.1 Let X be a random variable and f(t) a given function of time. Then

Y (t) = f(t)X

is a stochastic process.

Example 4.2 Let X,ω and δ be random variables then

Y (t) = X sin(ωt+ δ)

is a stochastic process. It corresponds to an oscillation with random amplitude, frequancy
and phase. Of course, it will still be a stochastic process if only one or two of these three
quantirtties is random.
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Example 4.3 A coin tossed n times. The number of heads is a random variable which
depends on the real parameter n. It is therefore a stochastic process in discrete time.

In general once a random variable X is defined we can define a stochastic process by
some mapping f

YX(t) = f(X(ω), t) (4.1)

A sample function or realization of Y is obtained with X(ω) = x

Yx(t) = f(x, t) (4.2)

With YX(t) defines as in (4.1) we can form averages knowing the probability density ρX(x)
of X. For instance

〈YX(t)〉 =
∫
YX(t)ρX(x)dx (4.3)

More generally, take n-values t1, t2, . . . , tn for the time variable and form the n-th moment

〈Y (t1)Y (t2) · · ·Y (tn)〉 =
∫
YX(t1)YX(t2) · · ·YX(tn)ρX(x)dx (4.4)

Of particular interest is the auto-correlation function of a stochastic process X(t)

C(t1, t2) = 〈[X(t1)− 〈X(t1)〉]〉 [X(t2)− 〈X(t2)〉]〉
= 〈X(t1)X(t2)〉 − 〈X(t1)〉〈X(t2)〉 (4.5)

For t1 = t2 = t it reduces to the time-dependent variance

σ2(t) = 〈[X(t)− 〈X(t)〉]2〉 (4.6)

4.2 Distribution Functions

Usually we cannot write explicit formulas for random variables. Since stochastic processes
are sets of random variables, it follows that we shall usually not be able to write ex-
plicit expressions for them either as in (4.1). We can characterize them in terms of their
probability distribution functions.

Choose some finite set of times t1, t2, . . . , tn. Then X(t1), X(t2), . . . , X(tn) are a set of
random variables, and we can specify their joint probability distribution function. So we
have the density functions

ρ1(x1, t1)
ρ2(x1, t1;x2, t2)
ρ3(x1, t1;x2, t2;x3, t3)
...
ρn(x1, t1;x2, t2; . . . ;xn, tn) (4.7)

Here ρ1(x1, t1)dx1 is the probability that the random variable X(t1) has the value x1 in the
range dx1. ρ2(x1, t1;x2, t2)dx1dx2 is the joint probability that the two random variables
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X(t1) and X(t2) have the values x1 and x2 in the ranges dx1 and dx2 respectively. The
ρn with n > 2 have similar meanings.

For a process defined as in (4.1) we find

ρ1(y, t) =
∫
δ(y − YX(t))ρX(x)dx (4.8)

and in general

ρn(y1, t1; y2, t2; . . . ; yn, tn; )

=
∫
δ(y1 − YX(t1))δ(y2 − YX(t2)) · · · δ(yn − YX(tn))ρX(x)dx (4.9)

From the distribution functions we can calculate averages as

〈X(t1)X(t2) · · ·X(tn)〉 =
∫
x1x2 · · ·xnρn(x1, t1;x2, t2; . . . ;xn, tn)dx1 · · · dxn (4.10)

The hierarchy of functions ρn obeys the following consistency conditions:

i) ρn ≥ 0,

ii) ρn(x1, t1;x2, t2; . . . ;xn, tn) = ρn(xi, ti; . . . ;xj , tj), i.e. they are symmetric upon per-
mutation of the variables,

iii)

ρn(x1, t1; . . . ;xn, tn) =
∫
ρn+1(x1, t1; . . . ;xn, tn;xn+1, tn+1)dxn+1

iv)
∫
ρ1(x1, t1)dx1 = 1.

It has been proved by Kolmogorov that any set of functions obeying these consistency
conditions determines a stochastic process X(ω, t).

A process is called stationary if

ρn(x1, t1 + τ ;x2, t2 + τ ; . . . ;xn, tn + τ) = ρn(x1, t1;x2, t2; . . . ;xn, tn) (4.11)

for alla n and τ . For a stationary process

ρ1(x1, t1) = ρ1(x1) (4.12)

and
〈X(t1)X(t2)〉 = 〈X(0)X(t2 − t1)〉 (4.13)

In particular, the mean value of a stationary stochastic process is independent of time
〈X(t)〉 = const..

If a process has a constant first moment or expectation, and an autocorrelation function
C(t2, t1) that depends only on t2 − t1, it is called wide sense stationary. This is a weaker
condition than stationarity, since it imposes no restrictions on the distribution functions
of order greater than two.

We shall also introduce a conditional probability density
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ρ1,1(x2, t2|x1, t1) =conditional probability density for X(t) to have the value x2 at t2
given that it had x1 at t1

which is defined as
ρ1,1(x2t2|x1t1) =

ρ2(x1t1;x2t2)
ρ1(x1t1)

(4.14)

Clearly ρ1,1 is nonnegative and normalized∫
ρ1,1(x2t2|x1t1)dx2 = 1

Integrating (4.14) over x1 also gives

ρ1(x2t2) =
∫
ρ1,1(x2t2|x1t1)ρ1(x1t1)dx1 (4.15)

More generally one may fix the values of X at k different times t1, . . . , tk and ask for the
joint probability at l other times tk+1, . . . , tk+l. This leads to the general definition of the
conditional probability ρl,k

ρl,k(xk+1tk+1; . . . ;xk+ltk+l|x1t1; . . . ;xktk)

=
ρk+l(x1t1; . . . ;xktk;xk+1tk+1; . . . ;xk+ltk+l)

ρk(x1t1; . . . ;xktk)
(4.16)

By definition ρk,l is symmetric in the set of k pair of variables, and also in the set of l
pairs of variables.

4.3 Sample path properties

A stochastic process is not a single function, but a family of functions, its sample functions.
In order to describe limiting operations on members of this family, we need to introduce
the concept of convergence of sequences of random variables.

There are several types of convergence that arise for random variables. Let {Xn} be a
sequence of random variables and X som fixed random variable.

1. The sequence {Xn} is said to converge to X almost certainly if |Xn − X| → 0 for
all sufficiently large n, except on some set of events of probability zero. This ode of
convergence is sometimes called strong convergence.

2. The sequence {Xn} converges to X in probability if

Pr{|Xn −X|} → 0 as n→∞

This mode of convergence is sometimes called weak convergence.

The difference between almost certain convergence and convergence in probability is
that in almost certain convergence, the set on which the sequence does not approach
X settles down to some fixed set at zero probability. For convergence in probability
the set where |Xn −X| is not zero also becomes of zero probability, but it need not
be fixed. It may move around in the event space Ω as n increases, never settling
down.
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3. The sequence {Xn} → X in mean square if

〈|Xn −X|2〉 → 0, as n→∞

This mode of convergence is analogous to mean square convergence in vector spaces.
It is the kind of convergence for which most of the results of stochastic calclus have
been derived.

4. {Xn} is said to converge to X in distribution if the cumulative distribution function
of the Xn approach the cumulative distribution function of X at all continuity points
of the latter function, i.e.

FXn(x)→ FX(x), n→∞

Since the cumulative distribution functions are ordinary functions their convergence
follows from usual analysis. The central limit theorem is an example of convergence
in distribution.

We may now ask what does it mean to say that a stochastic process is continous? We
shall say that a stochastic process is continous if, with probability one, all of its sample
functions are continous functions of t.

Sufficient conditions to determine whether a random process is or is not continous are
known, but are not easy to apply; it is often quite difficult to verify the hypotheses of the
continuity criteria. However for Markov processes (section 2.6) there is a relatively simple
criterion. If

lim
∆t→0

1
∆t

∫
|x−y|>ε

%1, 1(x, t+ ∆t|yt)dx = 0 (4.17)

for all ε > 0, then the process X(t) is continous. This condition means that finite jumps
of arbitrarily small size becom very improbable for sufficiently short time intervals.

Example 4.4 The transition probability

%1,1(xt|y0) =
(

1
4πDt

)1/2

e−(x−y)2/2Dt

satisfies (4.17) and yields sample functions which are very jagged but continous. On the
other hand

%1,1(x, t+ ∆t|yt) =
∆t
π

1
(x− y)2 + (∆t)2

the Cauchy distribution, does not satisfy (4.17) and yields sample functions that have
many discontinous jumps of varying amplitudes.

Differentiability of sample functions can be studied by the ordinary methods of analysis
since sample functions are ordinary functions.

Integration is another matter. Integrals of random processes are very important, es-
pecially in the theory of Brownian motion.

Let X(t) be a random process, x(t), one of its sample functions, and f(t) some fixed
function. Then we define∫ b

a
dtf(t)X(t) = lim

δ→0

∑
k

f(tξ)x(tξ)(tk − tk−1) for all sample functions x(t) (4.18)
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where tk−1 < tξ < tk and δ = |tk − tk−1|. Here X(t) is taken over all sample functions, so
the integral is a new stochastic process. The quantity on the rhs is the familiar Riemann
sum defining the integral of the sample function x(t). If the sample functions are integrable
for example if X is continous, then the integral of X defined in (4.18) will exist.

Similarly if the sample functions of X(t) are of bounded variation, i.e.

VX(t) = lim
δ→0

∑
k

|x(tk)− x(tk−1)| <∞

one can define the Stieltjes integral∫
f(t)dX(t) = lim

δ→0

∑
k

f(tk) [x(tk)− x(tk−1)]

However, it is a common occurence, that the process we may want to integrate are not of
bounded variation. We usually need to integrate very wildly varying functions. We would
like to define integrals of the structure∫

φ(X(t))dX(t)

where X(t) is not of bounded variation. We might try to define them as limits of Rieman-
Stieltjes sums

lim
δ→0

∑
k

φ(tξ) (x(tk)− x(tk−1))

If the limit exists, is independent of the choice of tk−1 < tξ < tk, then we say that the
integral exists and is equal to the limit. Unfortunately for the wildly varying functions
arising in Brownian motion theory for instance, while the limit often exists, it is not
independent of the choice of the intermediate points tξ. If x(t) varies very rapidly in the
interval tk− tk−1, no matter how small the interval, then the limit of the Rieman-Stieltjes
sum will clearly depend on how those intermediate points are chosen. Notice that this
problem does not arise if the function φ does not depend on X, but is merely a function
of t.

This difficulty can be circumvented by specifying how the tξ points are to be chosen
in constructing the sums. There are several ways of doing this, and each of them will give
rise to a different definition of the integral.

In Ito’s definition tξ is always chosen to be tk the at the end of the k’th interval. In
Stratonovich definition tξ = (tk + tk−1)/2 i.e. the midpoint of the jk’th interval.

4.4 Fourier analysis

In the analysis of ordinary functions, it is often useful to decompose the function into
frequency components, that is to construct either a Fourier series or a Fourier integral
representation of the function. The same thing can be done with random processes. Since
random processes are families of functions, not single functions, one will only be able to
determine statistical properties of the Fourier coefficients or transforms.

The sample functions of a random process are generally not periodic functions. There-
fore they cannot dbe developed in Fourier series in the conventional way. Nor do these
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functions vanish as t → ±∞, and they do not have Fourier integrals in the conventional
sense.

Let x(t) be a real sample function of the stochastic process X(t), with 〈X(t)〉 = 0. Let
T be some time and define a new function

xT (t) =
{
x(t), −T

2 ≤ t ≤
T
2

0, otherwise
(4.19)

In other words xT is a clipped version of x. The Fourier transform is

AT (ω) =
∫ T/2

−T/2
dte−iωtxT (t)

xT (t) =
1

2π

∫ ∞
−∞

dωeiωtAT (ω) (4.20)

Since xT (t) is real we have AT (ω) = A∗T (ω). Now

xT (t+ s)xT (t) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

dωdω′eiω(t+s)eiω′t)AT (ω)AT (ω′) (4.21)

Suppose that X(t) is a stationary process, then

1
T

∫ T/2

−T/2
dt〈xT (t+ s)xT (t)〉 =

1
T

∫ T/2

−T/2
dt〈xT (s)xT (0)〉 = 〈xT (s)xT (0)〉

and so

〈xT (s)xT (0)〉 =
1
T

1
(2π)2

∫ ∞
−∞

∫ ∞
−∞

eiωs〈AT (ω)A∗T (ω′)〉

{∫ T/2

−T/2
dtei(ω−ω′)t)dt

}
dωdω′

(4.22)
As T approaches infinity∫ T/2

−T/2
dtei(ω−ω′)t)dt→ 2πδ(ω − ω′)

We also suppose that

lim
T→∞

1
T
〈|AT (ω)|2〉 = S(ω)

exists. Then (4.22) becomes

〈x(s)x(0)〉 =
1

2π

∫ ∞
−∞

dωeiωsS(ω) =
1
π

∫ ∞
0

dω cos(ωs)S(ω) (4.23)

The second equality in (4.23) follows since

S(−ω) = lim
T→∞

1
T
〈|AT (−ω)|2〉 = lim

T→∞

1
T
〈AT (−ω)A∗T (−ω)〉

= lim
T→∞

1
T
〈A∗T (ω)AT (ω)〉 = S(ω)

The quantity S(ω) is called the power spectrum or just the spectrum of the process
X(t).

Equation (4.23) is the Wiener-Khinchin theorem.
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4.5 White noise

A random process whose spectrum S(ω) is independent of frequency is called white noise.
The name comes from an analogy with white light, whose spectrum is independent of
frequency.

If X(t) is a white noice process, then

〈x(s)x(0)〉 =
1

2π

∫ ∞
−∞

dωeiωsS(ω) =
1

2π

∫ ∞
−∞

dωeiωsS = Sδ(t) (4.24)

i.e. 〈x(t)x(0)〉 is a delta function. Then X(t + s) and X(t) are uncorrelated no matter
how small s is.

White noise can be considered to be a model for processes with short correlation times.

4.6 Classification of Stochastic Processes

There are many ways in which stochastic processes can be classified. For example they
could be classified in terms of continuity, boundedness etc., i.e. properties of their sample
functions. They could also be classified with respect to the properties of their distribution
functions. However the classification which has been found to be most useful for our
purposes is a classification according to their memory.

The simplest kund of process is one which has no memory of the past, or

ρn(x1t1;x2t2; . . . ;xntn) =
n∏
i=1

ρi(xiti) (4.25)

Such a process is called a completely random process. In terms of conditional probabilities
this gives

ρ1,n−1(x1t1|x2t2; . . . ;xntn) = ρ1(x1t1) (4.26)

The random variables X(t1) and X(t2) ar independent when t1 6= t2. More complicated
processes has correlations at different times. Processes with short memory are called
Markov processes where the process has memory only at its immediate past.

Let t1 < t2 < · · · < tn then for a Markov process we have

ρ1,n−1(xntn|x2t2; . . . ;xn−1tn−1) = ρ1,1(xntn|xn−1tn−1) (4.27)

That is the conditional probability density for xn at tn is fully determined by the value
of xn−1 at tn−1 and is not affected by any knowledge of the stochastic variable X(t) at
earlier times. The conditional probability density ρ1,1 is called the transition probability

A Markov process is fully determined by the two functions ρ1(x1t1) and ρ1,1(x2t2|x1t1).
For example

ρ3(x3t3;x2t2;x1t1) = ρ1,2(x3t3|x2t2;x1t1)ρ2(x2t2;x1t1)
= ρ1,1(x3t3|x2t2)ρ1,1(x2t2|x1t1)ρ1(x1t1) (4.28)

In general

ρn(xntn; . . . ;x1t1) = ρ1,1(xntn|xn−1tn−1)ρ1,1(xn−1tn−1|xn−2tn−2) · · ·
ρ1,1(x2t2|x1t1)ρ1(x1t1) (4.29)
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If we integrate (4.28) over x2 assuming t1 < t2 < t3 we obtain

ρ2(x3t3|x1t1) =
∫
ρ1,1(x3t3|x2t2)ρ1,1(x2t2|x1t1)dx2ρ1(x1t1) (4.30)

and then

ρ1,1(x3t3|x1t1) =
∫
ρ1,1(x3t3|x2t2)ρ1,1(x2t2|x1t1)dx2 (4.31)

This is the Chapman-Kolmogorov-Smoluchovski equation. The probability of transition
from x1, t1 to x3, t3 have been broken into two successive steps, first from x1, t1 to x2, t2
and then from x2, t2 to x3, t3. The successive steps are statistically independent. From
(4.30) we also have

ρ1(x3t3) =
∫
ρ1,1(x3t3|x2t2)ρ1(x2t2)dx2 (4.32)

which determines ρ1 in terms of the transition probability ρ1,1.

4.7 The Fokker-Planck Equaton

From the Chapman-Kolmogorov equation (4.31) we have with t1 = 0, t2 = t and t3 = t+s,

ρ1,1(y, t+ s|x0) =
∫

dzρ1,1(y, t+ s|zt)ρ1,1(zt|x0) (4.33)

We assume now that ρ1,1(yt + s|zt) is a very sharply peaked function of y − z when s is
small. That is the system cannot change its state very much in a short time, there are no
jumps. Then only values of z near y will contribute to the integral. Take some arbitary
smooth function φ(y) wich vanish as y → ±∞. Multiply by this function and integrate
over y. We also expand φ(y) as

φ(y) = φ(z) + (y − z)φ′(z) +
1
2

(y − z)2φ′′(z) + · · ·

Then ∫
dyφ(y)ρ1,1(y, t+ s|x0) =

∫
dy
∫

dzφ(y)ρ1,1(y, t+ s|zt)ρ1,1(zt|x0) (4.34)

But if we intrchange the order of integration on the rhs we have∫
dyφ(y)ρ1,1(y, t+ s|zt)

=
∫

dy
[
φ(z) + (y − z)φ′(z) +

1
2

(y − z)2φ′′(z) + · · ·
]
ρ1,1(y, t+ s|zt)

= φ(z) + φ′(z)
∫

dy(y − z)ρ1,1(y, t+ s|zt)

+
1
2
φ′′(z)

∫
dy(y − z)2ρ1,1(y, t+ s|zt) + · · · (4.35)
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Let us now assume that the following limits exist

A(z) = lim
∆t→0

1
∆t

∫
dy(y − z)ρ1,1(yt+ s|zt)

B(z) = lim
∆t→0

1
∆t

∫
dy(y − z)2ρ1,1(yt+ s|zt)

0 = lim
∆t→0

1
∆t

∫
dy(y − z)nρ1,1(yt+ s|zt); n > 2 (4.36)

Then for s = ∆t→ 0∫
dyφ(y)ρ1,1(y, t+ ∆t|x0)

=
∫

dz
[
φ(z) + φ′(z)A(z)∆t+

1
2
φ′′(z)B(z)∆t

]
ρ1,1(zt|x0) (4.37)

A rearrangement and integration by parts gives∫
dyφ(y)

ρ1,1(yt+ ∆t|x0)− ρ1,1(yt|x0)
∆t

=
∫

dyφ(y)
{
− ∂

∂y
[A(y)ρ1,1(yt|x0)] +

1
2
∂2

∂y2
[B(y)ρ1,1(yt|x0)]

}
(4.38)

Take ∆t→ 0, and since φ(y) is an arbitrary smooth function we conclude that

∂

∂t
ρ1,1(yt|x0) = − ∂

∂y
[A(y)ρ1,1(yt|x0)] +

1
2
∂2

∂y2
[B(y)ρ1,1(yt|x0)] (4.39)

This is the Fokker-Planck equation or the forward equation.
We can also derive the adjoint or backward equation from the Chapman-Kolmogorov

equation. From (4.31) we have with 0 < t < t1

ρ1,1(x1t1|x0) =
∫

dyρ1,1(x1t1|yt)ρ1,1(yt|x0) (4.40)

Taking the derivative with respect to t gives

0 =
∫

dy
∂

∂t
ρ1,1(x1t1|yt)ρ1,1(yt|x0) +

∫
dyρ1,1(x1t1|yt)

∂

∂t
ρ1,1(yt|x0) (4.41)

and from the forward equation together with partial integrations∫
dy
[
∂

∂t
ρ1,1(x1t1|yt) +A(y)

∂

∂y
ρ1,1(x1t1|yt)

+
1
2
B(y)

∂2

∂y2
ρ1,1(x1t1|yt)

]
ρ1,1(yt|x0) = 0

which leads to

∂

∂t
ρ1,1(x1t1|yt) = −A(y)

∂

∂y
ρ1,1(x1t1|yt)−

1
2
B(y)

∂2

∂y2
ρ1,1(x1t1|yt) (4.42)
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4.8 The Wiener Process

A stochastic process X(t), is said to be a process with independent increments if given n+1
times 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn the random variables X(0), X(t1)−X(0), . . . , X(tn)−X(tn−1)
are pairwise independent. A stochastic process is said to be a Gaussian process if all of
its distribution functions are multivariate Gaussian distributions

ρn(x1, t1;x2, t2; . . . , xn, tn) =
[

detg
(2π)n

]1/2

e−
1
2
xT gx (4.43)

where x is a column vector with elements (X(t1), . . . , X(tn)) and xT the corresponding
row vector. The matrix g is the inverse of the covariance matrix C where

C(ti, tj) = 〈X(ti)X(tj)〉

Here we have assumed that the stochastic process is centred so that 〈X(t)〉 = 0.
A particular important Gaussian Markov process is the Wiener process, which is a set

of Gaussian random variables W (t) defined for t ≥ 0 with the following properties:

i) 〈W (t)〉 = 0,

ii) W (0) = 0,

iii) the increments W (ti)−W (tj), ti, tj > 0 are stationary and independent i.e.,

P [W (t2 + τ)−W (t1 + τ)] = P [W (t2)−W (t1)]

and W (ti)−W (tj),W (tk)−W (tl) are independent for ti > tj ≥ tk > tl ≥ 0.

The Wiener process itself is not stationary since W (0) = 0. Since W (t) is Gaussian and
centered, so also are the increments.

Let us examine the variance of W (t). Since its mean value is zero its variance is equal
to its second moment. For any t1, t2 > 0

Var [W (t1 + t2] = 〈[W (t1 + t2)]2〉 = 〈[W (t1 + t2)−W (t1) +W (t1 −W (0)]2〉
= 〈[W (t1 + t2)−W (t1)]2〉+ 〈[W (t1)−W (0)]2〉

The last step follows since W (t1 + t2)−W (t1) and W (t1)−W (0) are independent. From
the stationary property of the increments the last equation gives

Var [W (t1 + t2] = Var [W (t2] + Var [W (t1)] (4.44)

If we write
Var [W (t)] = c(t) (4.45)

equation (4.44) yields
c(t1 + t2) = c(t1) + c(t2) (4.46)

Hence for r a positive integer c(r) = rc(1), and it immediately follows that this is true for
r the quotient of two positive integers. It is also true for a positive irrational number, if
we take this as the intersection of two limiting sequaences of rational numbers, c(t) being
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continous because W (t) is. The function c(t) is therefore proportional to t and we may
express (4.45) as

Var [W (t)] = σ2t (4.47)

where σ2 is positive and is connected to a diffusion constant. More generally

Var [W (t)−W (s)] = Var [W (t− s)−W (0)] = Var [W (t− s)]

or
Var [W (t− s)] = σ2|t− s| (4.48)

since the variance is nonnegative. Since the increments are Gaussian we have the charac-
teristic function

φ(k;W (t)−W (s)) = e−
1
2
σ2|t−s|k2

(4.49)

Consider now W (s) and W (t) with 0 ≤ s ≤ t, then

〈W (s)W (t)〉 = 〈W (s)[W (s) +W (t)−W (s)]〉
= 〈W (s)W (s)〉+ 〈[W (s)−W (0)][W (t)−W (s)]〉
= Var[W (s)] = σ2s

Similarly when 0 ≤ t ≤ s

〈W (s)W (t)〉 = Var[W (s)] = σ2t

Both cases therefore give
〈W (s)W (t)〉 = σ2 min(s, t)

Let us now take t1 < t2 and t′1 < t′2 and consider the case t1 < t′1 < t2 < t′2. Then

〈[W (t2)−W (t1)]
[
W (t′2)−W (t′1)

]
〉 = 〈W (t2)W (t′2)〉+ 〈W (t1)W (t′1)〉

− 〈W (t2)W (t′1)〉 − 〈W (t1)W (t′2)〉 = σ2
(
t2 + t1 − t′1 − t1

)
= σ2(t2 − t′1)

= σ2
[
(t2 − t1) ∩ (t′2 − t′1)

]
(4.50)

This relation is generally true for other combinations of the intervals.
If we now write

t1 = t, t2 = t+ dt; t′1 = t′, t′2 = t′ + dt′

W (t+ dt)−W (t) = dW (t)
W (t′ + dt′)−W (t′) = dW (t′)

we deduce from (4.50)
〈dW (t)dW (t′)〉 = σ2

(
dt ∩ dt′

)
(4.51)

and in particular for t = t′

〈dW (t)2〉 = σ2dt (4.52)

This relation holds for the actual paths i.e. [dW (t)]2 = σ2dt which shows that W (t) is
nowhere differentiable.
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Let us now choose an arbitrary non-stochastic function f(t, t′) continouos in t and t′

and consider the integral∫ ∫
f(t, t′)〈dW (t)dW (t′)〉 = σ2

∫ ∫
f(t, t′)

(
dt ∩ dt′

)
= σ2

∫
f(t, t)dt = σ2

∫ ∫
f(t, t′)δ(t− t′)dtdt′

Therefore we may write this as

〈dW (t)
dt

dW (t′)
dt′

〉 = σ2δ(t− t′) (4.53)

and even if dW (t)/dt does not exist its variance is a delta-function.


