
Chapter 3

Probability theory

3.1 Probability

Most physical, chemical or biological systems accessible to experimental observations con-
sists of many particles: atoms, molecules etc. In trying to understand their properties,
we cannot hope to follow the motion of all the constituent particles in full detail. The
outcome of an experiment is not completely predictable from the limited data available
about the initial conditions of the system, even when the physical laws governing the sys-
tem are known. Normally the best one can do is to predict what will happen most of the
time, and estimate the frequency deviations from this expectation will occur and what
their magnitudes might be. The mathematical tool which has been developed to make
such predictions is the theory of probability.

The mathematical setting for probability theory is the following. There is a space Ω,
called the sample space. The set Ω can be any collection of elements. The elements or
points of the sample space, designated by ω, are called the elementary events. Subsets of
Ω containing more than one point are called compound events, or just events. The idea is
that the ω’s are the possible results of experiments and Ω is the set of all possible results of
experiments. For example, if the experiment is throwing of a die, Ω consists of six points,
which may be taken as the integers, 1, . . . , 6. In this case Ω has 26 = 64 subsets, counting
the empty set ∅ and the entire space Ω.

To each of the subsets E ∈ Ω, there is assigned a probability P (E) called the probability
of E. This is supposed to represent the liklihood that the event E will occur in a given
experiment or trial. How are these numbers to be assigned? Do probabilities reflect the
degree of certainty or beliefe that an event has occured or will occur, or do they represent
the relative frequency with which events occur if the experiment is repeated sufficiently
many times? Most physical scientists adopt the relative frequency interpretation i.e. if
an experiment is repeated N times and the event E is observed to happen in NE of these
then

P (E) =
NE

N
, N →∞

Another possibility is to assume equal a priori probability for the elementary events, i.e.
if the space Ω consists of N elements then

P (ω) =
1
N

28
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from which P (E) can be obtained for any E.
The mathematical theory of probability is concerned with relations between the prob-

abilities of various sets, and the properties of various functions associated with these
probabilities. Let E1 and E2 be sets. The set of points common to both E1 and E2 is
denoted by E1 ∩ E2 = E1E2. It represents the simultaneous occurence of both E1 and
E2. The set E1 ∪ E2 = E1 + E2 denote the set of points belonging to E1 or to E2 or to
both. This corresponds to the occurence of either E1 or E2 or both. The set of points in
E1 but not in E2 is denoted by E1 − E2. This corresponds to the occurence of E1 and
non-occurence of E2. The complement of a set E denoted by E is the set of points not in
E : E = Ω − E. This corresponds to the nonoccurence of E. If E1 ∩ E2 = E1E2 = ∅ we
say that the events E1 and E2 are mutually exclusive (or disjoint).

Example 3.1 Consider the tossing of a fair coin. The elementary events are ωH and ωT
where ωH and ωT are the elementary events that the coin lands with the head up and the
tail up, respectively. These events are mutually exclusive, i.e. ωH ∩ ωT = ∅.

We can now state the axioms at the foundation of probability theory.

Definition 3.1 A probability function is a real scalar function P defined on the subsets
of a space Ω with the following properties:

1. For every E ⊆,Ω , P (E) ≥ 0.

2. P (Ω) = 1.

3. For sets Ei, i ∈ I of any mutually exclusive events Ei ⊆ Ω where the set I is countable
, P (∪iEi) =

∑
i P (Ei).

In this definition, Properties 1–3 imply that, for every E ⊆ Ω , 0 ≤ P (E) ≤ 1. In
particular, P (E) = 0 if E = ∅. For this reason, event ∅ is called impossible. Because of
Property 2, space Ω is also called the certain event.

We notice that P is a measure on Ω with finite total measure, i.e. P is a set function
on the subsets of Ω. There are certain technical requirements on the sets Ei, they must
form what is called a σ−field or σ−ring. This requirement is necessary since there may
be sets for which the probability is not defined.

From the axioms of probability theory one may derive a number of useful auxiliary
formulae. For any two sets A and B

A = A ∩ Ω = A ∩ (B +B) = A ∩B +A ∩B

and since (A ∩B) ∩ (A ∩B) = ∅ this implies

P (A) = P (AB) + P (AB)

Also
P (A+B) = P (A) + P (B)− P (AB)

With these results one can solve many problems dealing with finite sample spaces, i.e.
when Ω contains only a finite number of points. However finite sample spaces will not
suffice for the development of the theory of Brownian motion.
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3.2 Conditional probability and independence.

So far we have been concerned with the probability of occurence of certain events without
regard to what other events may have occured. We therefore introduce the concept of
conditional probability as:

Definition 3.2 For any two events E1, E2 ⊆ Ω such that P (E1) 6= 0,

P (E2|E1) = P (E1 ∩ E2)/P (E1)

is called the conditional probability of event E2 under the condition that event E1 occurs.

A conditional probability is a genuine probability, it satisfies all of the axioms in the
previous section. The sample space is however different than Ω.

Example 3.2 As an elementary example suppose you throw a fair dice. The probability
that the upper face bears more than three dots is 1/2. The probability that the face bears
more than three dots if it is known that the number of dots is even is 2/3. In the first case
the sample space is {1, 2, . . . , 6}; in the second case it is {2, 4, 6}.

We now turn to the concept of independent events. Qualitatively we say that two
events are independent if the occurence of one has no influence on the occurence of the
other. The events E1 and E2 are independent if

P (E1|E2) = P (E1), P (E2) 6= 0. (3.1)

Alternatively
P (E1 ∩ E2) = P (E1)P (E2). (3.2)

The concept of conditional probability and independence can be extended to more
than two events. Consider three events E1, E2 and E3. The conditional probability of E3

given E1 and E2 i.e. given E1 ∩ E2 = E1E2 is defined by

P (E1E2E3) = P (E3|E1E2)P (E1E2).

The three events are independent if

P (E1E2E3) = P (E1)P (E2)P (E3)

and, in addition, if the events are pairwise independent i.e.

P (EjEk) = P (Ej)P (Ek) j, k = 1− 3, j 6= k.

3.3 Random variables and probability distributions

In elementary examples it is in general possible to describe the events of the sample space
in detail. In more complicated, and in particular more realistic, situations this is awkward,
or just not possible. We do however often know the results of some numerical measurement
carried our on the system.
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Example 3.3 For example, suppose we have a box of electrical resistors, all nominally
of the sam resistance. Because of the vagaries of the manufactoring process, the actual
resistancees will differ from each other and from the nominal resistance. if a resistor is
picked from the box at random, simultaneously a resistance value is also picked at random
from the set of resistance values of the resistans. The resistance is a real valued function
defined on the set of resistors. Its value can be determined by experiment. Thus we have
numerically valued function defined on the sample space.

Random or stochastic variables are variables whose values are determined by the out-
come of experiments. The most we can know about a random variable is the probability
that a particular value of it will be realized in an experiment.

Any real or complex single valued function X of elementary events ω defined on a
sample space Ω is called a random variable. Random variables can also be vector valued.
We write the functional dependence as

X(ω) = x

Random variables are point functions on Ω such that the inverse mapping of every
interval in R corresponds to an event in Ω. In a given experiment a random variable may
have any one of a number of values. Therefore one must distinguish a random varaible X
from its possible realizations {xi}.

Since we often do not know very much about the detailed structure of the sample
space, it is usually not possible to specify the form of a random variable in an analytic
way. But there is a convenient way to characterize random variables analytically. We first
discuss this for the case that the random variable is a real valued function. Let us define
a function FX(x) by

FX(x) = P (X ≤ x) (3.3)

The notation P (X ≤ x) means the probability that the random variable X has a value
less than or equal to the number x. It is defined as the probability of the set of events
{ω} such that X(ω) ≤ x,

P (X ≤ x) = Pr{ω ∈ Ω, X(ω) ≤ x}

Clearly FX has the following properties

i) F (−∞) = 0,

ii) F (∞) = 1,

iii) F is a non-decreasing function of x

FX(x) is called the cumulative distribution function. The following theorem about the
structure of cumulative distribution functions has been proved:

Theorem 3.1 Every cumulatative distribution function can be written as the sum of three
parts: an absolutely continous part Fac, an atomic part Fa, and a singular but continous
part Fs. This means that

Fac(x) =
∫ x

−∞
dy %(y)
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where %(x) ≥ 0 is some integrable function. The atomic part has jumps at a denumerable
number of points {xk} and is constant between the points. It can be written as a sum of
Dirac delta functions

Fa(x) =
∫ x

−∞
dy
∑
k

pkδ(x− xk)

The singular continous part Fs is continous everywhere but has its points of increase
concentrated on set of measure zero probability.

The function %(y) is a probability density where %(y)dy = prob. to find X in the
interval (y, y + dy). For a cumulative distribution with an absolutely continous part and
an atomic part we have the density

%X(x) = %(x) +
∑
k

pkδ(x− xk) (3.4)

Since FX(∞) = 1 we must have ∫ ∞
−∞

dy %(y) +
∑
k

pk = 1 (3.5)

We note that
%X(x) =

d
dx
FX(x) (3.6)

Often we wish to find the probability density not for the stochastic variable X, but for
some new stochastic variable

Y = H(X)

where H(x) is a known function of X. The probability density %Y (y) for the stochastic
variable Y is defined as

%Y (y) =
∫ ∞
−∞

dx δ (y −H(x)) %X(x)

where δ(y −H(x)) is the Dirac delta function.
Then with

u = H(x), du = H ′(x)dx

we have

%Y (y) =
∫ H(∞)

H(−∞)
du δ(y − u)

%X(H−1(u))
H ′(H−1(u))

=
1

H ′ [H−1(y)]
%X
[
H−1(y)

]
=
%X(x)
H ′(x)

. (3.7)

3.4 Expectations

The distribution function of a random variable contains all possible information about the
variable, and may be difficult to compute. In practice we have only limited information
of the distrubution such as the central tendency and its spread etc.

The n’th moment of X is defined as

〈Xn〉 =
∫ ∞
−∞

dxxn%X(x) (3.8)
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The first moment µ = 〈X〉 is the mean value of X. Here every possible value of X
is weigted by the probability of its occurence and the results added. Thus x-values of
high probability are more important than those of low probability in determining the
expectation. Consequently 〈X〉 usually gives an indication where the highest probability
values of X are likely to be.

There are two other measures of central tendency that are sometimes used: the median
and the mode. The median is that value of x for which FX(x) ≥ 1/2, i.e. half of the cases
will have values greater than x, half less. The mode is the value of x for which %(x) is a
maximum. There may be more than one mode for a given distribution; such distributions
are called multimodal.

A useful characterization of the width or spread of a distribution would be the mean
of the distribution from the mean 〈|X−〈X〉|〉. However this quantity is difficult to handle
analytically, and a more useful measure of the width is the variance defined by:

σ2 = 〈(X − 〈X〉)2〉 =
∫

dxx2%X(x)−
[∫

dxx%X(x)
]2

(3.9)

This quantuty is always positive and vanishes only when everything is concentrated at the
mean. The standard deviation is defined as σ, the square root of the variance.

The central moments are generally defined by

µj = 〈(X − 〈X〉)j〉 (3.10)

Moments of order higher than the second are often difficult to obtain.

3.5 Characteristic function of a random variable

A useful function for studying a distribution function is its Fourier transform

fX(k) = 〈eikX〉 =
∫ ∞
−∞

dx eikx%X(x) (3.11)

This function is called the characteristic function, and it is uniquely defined by the prob-
ability distribution function. Because %X is a probability density and hence nonnegative
and integrable from −∞ to ∞, fX(k) always exists. Furtermore %X(x) is determined
uniquely by its characteristic function. The inversion formula of (3.11) reads

%X(x) =
1

2π

∫ ∞
−∞

dk e−ikxfX(k) (3.12)

For the atomic parts of %X we use the formulae∫ ∞
−∞

dx eikxδ(x− x0) = eikx0∫ ∞
−∞

dk eikx0e−ikx = 2πδ(x− x0)

Characteristic functions are continous functions of k and have the property that

fX(0) = 1; |fX)k)| ≤ 1; fX(−k) = f∗X(k) (3.13)



34 Chapter 3 Probability theory

The product of two characteristic functions is always a characteristic function.
We can write (3.11) as a Taylor series

fX(k) =
∞∑
n=0

(ik)n

n!
〈Xn〉 (3.14)

i.e.

〈Xn〉 = (−i)n
(

dn

dkn
fX(k)

)
k=0

(3.15)

It is often useful to write the characteristic function fX(k) in terms of cumulants cn. Let

g(k) = ln f(k) =
∞∑
n=1

(ik)n

n!
cn (3.16)

Then

cn = −i
(

dn

dkn
g(k)

)
k=0

(3.17)

This yields

c1 = −i
(
f ′(k)
f(k)

)
k=0

= 〈X〉

c2 = −
(

d2

dk2
g(k)

)
k=0

= −
[
f ′′(k)
f(k)

− f ′(k)2

f2(k)

]
k=0

= 〈X2〉 − 〈X〉2 = σ2 (3.18)

Example 3.4 Gaussian distribution. For the Gaussian distribution we find

fX(k) =
(

1
2πσ2

)1/2 ∫ ∞
−∞

dxeikxe−(x−µ)2/2σ2
= eikµ

(
1

2πσ2

)1/2 ∫ ∞
−∞

dzeikze−z
2/2σ2

= eikµ−k2/2σ2

(
1

2πσ2

)1/2 ∫ ∞
−∞

dz exp
[
−1

2
(z/σ − ikσ)2

]
= eikµ−k2/2σ2

This is the characteristic function for a Gaussian random variable. When the Gaussian
variable is centerd, fX(k) assumes the form exp(−k2σ2/2).

Example 3.5 Poisson distribution. The characteristic function for the Poisson dis-
tribution is given by

fX(k) = 〈eikX〉 =
∞∑
n=0

eiknλ
n

n!
e−λ = e−λ

∞∑
n=0

1
n!

(
λeik

)n
= eλ(eik−1)

3.6 Distributions of several random variables

We consider now a system which involves more than one random variable. Suppose that the
random variables X1, X2, . . . , Xn are defined as functions on the same space, as happens,
for example if each Xi is the three dimensional position vector r of a gas of molecule in a
container. The functional form now reads
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 X1(ω)
...

Xn(ω)

 =

 x1
...
xn

 (3.19)

The joint distribution function for the stochastic variables X1, X2, . . . , Xn are defined
by

FX1X2···Xn(x1, x2, . . . , xn) = Pr{X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn} (3.20)

where {X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn} = {X1 ≤ x1} ∩ {X2 ≤ x2} · · · ∩ {Xn ≤ xn} and
the probability is taken for the values of elementary events ω that satisfy the inequalities
in (3.20). In other words FX1,···,Xn(x1, . . . , xn) is the probability that simultaneously the
stochastic variables Xi have values in the intervals {−∞ < Xi < xi}, i = 1, . . . , n. If the
random variables are continous it will be possible to write

FX1X2···Xn(x1, x2, . . . , xn) =
∫ x1

−∞
dy1 · · ·

∫ xn

−∞
dyn %X1,···,Xn(y1, . . . , yn) (3.21)

and %(x1, . . . , xn is called the joint probability density function, and is defined as

%X1,···,Xn(x1, . . . , xn) =
∂n

∂x1, · · · ∂xn
FX1X2···Xn(x1, x2, . . . , xn) (3.22)

For the reduced distribution function FX1X2···Xn−1(x1, x2, . . . , xn−1) consistency requires
that

FX1X2···Xn−1(x1, x2, . . . , xn−1) = FX1X2···Xn(x1, x2, . . . , xn−1,∞)

=
∫ x1

−∞
dy1 · · ·

∫ xn−1

−∞
dyn−1

∫ ∞
−∞

dyn %X1,···,Xn(y1, . . . , yn) (3.23)

The joint characteristic function is defined as

fX1···Xn(k) = fX1···Xn(k1, . . . , kn) = 〈exp (ik ·X)〉 = 〈exp i (k1X1 + k2X2 + · · ·+ knXn)〉
(3.24)

Here mean values are defined by

〈g(X1, . . . , Xn)〉 =
∫

dx g(x) %(x) (3.25)

where
∫

dx =
∫∞
−∞ dx1 · · ·

∫∞
−∞ dxn.

When the random variables are independent we have from (3.2) and (??)

Pr{ω : X1(ω) ≤ x1, X2(ω) ≤ x2, . . . , Xn(ω) ≤ xn}
= Pr{ω : X1(ω) ≤ x1}Pr{ω : X2(ω) ≤ x2} · · ·Pr{ω : Xn(ω) ≤ xn} (3.26)

This implies that for independent variables

FX1X2···Xn−1(x1, x2, . . . , xn−1) =
n∏
i=1

FXi(xi) (3.27)
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The corresponding density is

%X1···Xn(x1, . . . , xn) =
n∏
−=1

%Xi(xi) (3.28)

and from (3.24)

fX1···Xn(k1, . . . , kn) =
n∏
i=1

fXi(ki) (3.29)

Multidimensional random variables can be analyzed in terms of moments as before,
and the most important of these are the expectation vector and the variance matrix. The
expectation vector µX = (µ1, µ2, . . . , µn) of the random variable X = (X1, X2, . . . , Xn) is

µX =
∫

dx x ρX(x) (3.30)

The variance matrix C of n random variables X1, X2, . . . , Xn is defined as the n × n
matrix whise ij-element is

Cij = 〈(Xi − µi)(Xj − µj)〉 =
∫

dx (xi − µi)(xj − µj) %X(x) (3.31)

For any random variables, the variance matrix C is symmetric and so-called non-negative
definite, i.e. all of its egenvalues are non-negative. Every diagonal entry of matrix C is
non-negative and is called the variance of the i th entry. The nondiagonal element Cij is
called the covariance of Xi and Xj . The random variables Xi and Xj , i 6= j, are called
uncorrelated if and only if Cij is zero.

Let X1 and X2 be two continous random variables with probability density functions
%X1(x1) and %X2(x2) respectively and let %X1X2(x1, x2) be their joint density function.
Suppose given X1 = x1, %X2|X1

(x2|x1)dx2 is the probability that one finds X2 in the
interval (x2, x2 + dx2). Then %X2|X1

is called the conditional probability density. Now

%X1X2(x1, x2)dx1dx2 = %X2|X1
(x2|x1)dx2 × %X1(x1)dx1 (3.32)

and therefore
%X2|X1

(x2|x1) =
%X1X2(x1, x2)
%X1(x1)

(3.33)

provided %X1(x1) 6= 0. In general we can define conditional probabilities for arbitrary
variables as

%Xk+1···Xn|X1···Xk(xk+1, . . . , xn|x1, . . . , xk) =
%X1···Xn(x1, . . . , xn)
%X1···Xk(x1, . . . , xk)

(3.34)

3.7 Joint normal distribution

One of the most important distribution is the multivariate Gaussian distribution. Let us
consider n Gaussian variables X1, X2, . . . , Xn, let 〈Xi〉 = µi and let C denote the variance
matrix defined above

Cij = 〈(Xi − µi)(Xj − µj)〉
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We write x− µ for the column vector with elements xi − µi, i = 1, . . . , n and (x− µ)T for
the corresponding row vector with these elements. Assuming that the determinant of the
variance matrix does not vanish we define the joint normal distribution of X1, X2, . . . , Xn

as that with the probability density function

%X1···Xn(x1, x2, . . . , xn) =
[

det(G)
(2π)n

]1/2

exp
(
−1

2
(x− µ)TG(x− µ)

)
(3.35)

where G = C−1 is the inverse of the variance matrix. Here

(x− µ)TG(x− µ) =
n∑
i=1

n∑
j=1

(xi − µi)Gij(xj − µj)

Since C is a real symmetric matrix G is also real and symmetric. It can therefore be
diagonalized using an orthogonal transformation Q where

Q−1 = QT Q−1Q = 1

Then we have
QGQT = D

where D is a diagonal matrix with the eigenvalues gi of G on the diagonal. Let

u = Q(x− µ)

Since det(Q) = det(QT ) = 1 the Jacobian J of this transformation is one and we have∫
dx exp

(
−1

2
(x− µ)TG(x− µ)

)
=
∫

du exp
(
−1

2
uTQGQTu

)
=

∫
du exp

(
−1

2

n∑
i=1

giu
2
i

)
=

√
(2π)n

g1 · · · gn
=

√
(2π)n

det(G)

which show that the distribution is properly normalized.
The characteristic function is

fX1···Xn(k1, . . . , kn) =

√
det(G)
(2π)n

∫
dx eikTx exp

(
−1

2
(x− µ)TG(x− µ)

)

= eikTµ

√
det(G)
(2π)n

∫
du exp

(
ikTQTu− 1

2

n∑
i=1

giu
2
i

)

= eikTµ

√
1

(2π)n

∫
du exp

(
ikTQTD−1/2u− 1

2

n∑
i=1

u2
i

)

Now let v = D−1/2Qk and vT = kTQTD−1/2, then

fX1···Xn(k1, . . . , kn) = exp
(

ikTµ− 1
2

vTv

)√
1

(2π)n

∫
du exp

(
−1

2

n∑
i=1

(ui − ivi)2

)

= exp
(

ikTµ− 1
2

vTv

)
= exp

(
ikTµ− 1

2
kTG−1k

)
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The last step follows since

vTv = kTQTD−1/2D−1/2Qk = kTQTD−1Qk = kTG−1k = kTCk

Therefore

fX1···Xn(k1, . . . , kn) = exp
(

ikTµ− 1
2

kTCk

)
(3.36)

From this we can directly find the moments

〈Xi〉 = −i
(
∂f

∂ki

)
k=0

= µi

and

〈(Xi − µi)(Xj − µj)〉 = −
(

∂2f

∂ki∂kj

)
k=0

= Cij

3.8 Central limit theorem and law of large numbers

We now consider the central limit theorem for a set of independent random variables
X1, X2, . . . , Xn Suppose that the set is identically distributed, each variable having a
finite mean µ <∞ and variance σ2 <∞. The characteristic function of Xr is

fXr(k) = 〈eikXr〉 = 1 + ikµ− 1
2
k2(σ2 + µ2) + (ik)3λ(k) (3.37)

where λ(k) <∞, k → 0. For the centered variable Yr = Xr − µ we similarly find

fYr(k) = 1− 1
2
k2σ2 + (ik)3λ1(k) (3.38)

For the scaled variable αYr we have

fαYr(k) = 〈eikαYr〉 = fYr(αk) = 1− 1
2

(αk)2σ2 + (iαk)3λ1(αk) (3.39)

Consider now the variable

Y =
n∑
i=1

Yi√
n

(3.40)

which is scaled with α = 1/
√
n. Then

fY (k) = 〈eikY 〉 = 〈exp

[
ik

n∑
i=1

Yi√
n

]
〉 =

n∏
i=1

f 1√
n
Yi

(k)

=

[
1− k2

2n
σ2 +

(
ik√
n

)3

λ1

(
k√
n

)]n
=

1−
k2
[
σ2 + i2k√

n
λ1

(
k√
n

)]
2n

n

→ exp
(
−1

2
k2

[
σ2 +

i2k√
n
λ1

(
k√
n

)])
= e−

1
2
k2σ2

n→∞ (3.41)
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This is the characteristic function of a Gaussian distribution with mean value zero and
variance σ2. The random variable

Y =
n∑
i=1

(Xi − 〈Xi〉)√
n

therefore becomes a Gaussian variable as n → ∞. This is a formulation of the central
limit theorem.

The law of large numbers applies to n independent experiments and may be stated as
follows:

If an avent A has a propability p of occuring then the fraction of outcomes
of A approaches p in the limit n→∞.

The proof has two steps. The first involves the derivation of the Chebycheff inequality.
With µ = 〈X〉, the variance of a stochastic variable X is

σ2
X =

∫ ∞
−∞

dx(x− µ)2%X(x)

If we now delete the range of variables x for which |x− µ| ≤ ε we can write

σ2
X ≥

∫ µ−ε

−∞
dx(x− µ)2%X(x) +

∫ ∞
µ+ε

dx(x− µ)2%X(x)

≥ ε2
[∫ µ−ε

−∞
dx%X(x) +

∫ ∞
µ+ε

dx%X(x)
]

= ε2Pr {|X − µ| ≥ ε}

This gives the Chebycheff inequality

Pr {|X − µ| ≥ ε} ≤
σ2
X

ε2

Let’s now consider n independent measurements of the stochastic variable X. Let Yn
be the mean value of the outcomes

Yn =
1
n

(X1 + · · ·+Xn)

then 〈Yn〉 = µ and from Chebycheff’s inequality

Pr {|Yn − µ| ≥ ε} ≤
σYn
ε2

But for independent events

σ2
Yn =

1
n
σ2
X

i.e.

Pr {|Yn − µ| ≥ ε} ≤
σ2
X

nε2
→ 0 n→∞
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3.9 Infinitely divisible and stable distributions

The concept of an infinitely divisible distribution function is important to all limit theo-
rems. The limiting distribution can only belong to this class of distributions. A stochastic
variable Y is infinitely divisible if for any integer n it can be represented by a sum

Y = X1 +X2 + · · ·+Xn

of identically distributed stochastic variables Xi, (i = 1, . . . , n). The distribution function
%Y (y) is infinitely divisible if and only if for any n its characteristic function fY (k) is the
n’th power of some characteristic function fX(k). Thus

fY (k) = [fX(k)]n ; fX(k) = [fY (k)]1/n

Example 3.6 Gaussian distribution. The characteristic function for a Gaussian dis-
tribution is

fY (k) = eikµ−k2σ2
Y /2

The n’th root is

fX(k) = [fY (k)]1/n = exp
(

ik
µ

n
− 1

2
k2σ

2
Y

n

)
which is a Gaussian random variable with mean µ/n and variance σ2

Y /n.

Example 3.7 Poisson distribution. The density for a stochastic variable with mean
a+ λh and variance h2λ is

%Y (y) =
∞∑
m=0

λm

m!
e−λδ(y − a−mh)

The characteristic function is

fY (k) =
∞∑
m=0

λm

m!
e−λeik(a−mh) = exp

(
iak + λ

(
eikh − 1

))
The n’th root is

fX(k) = exp
(

ik
a

n
+
λ

n

(
eikh − 1

))
which is again a Poisson distribution with density

%Y (y) =
∞∑
m=0

(λ/n)m

m!
e−λδ

(
y − a

n
−mh

)
Example 3.8 Cauchy distribution. The Cauchy distribution has density

%Y (y) =
1
π

a

a2 + (y − b)2
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with 〈Y 〉 = b but σ2
Y =∞. The characteristic function is

fY (k) =
1
π

∫ ∞
−∞

dyeiky a

a2 + (y − b)2
=

eikb

π

∫ ∞
−∞

dueiku a

a2 + u2

=
eikb

π

∫ ∞
−∞

dueiku a

(a+ iu)(a− iu)
=
{

eikb−ka k > 0
eikbka k < 0

= eikb−|k|a

The n’th root is

fX(k) = exp
(

ik
b

n
− |k|a

n

)
which is again a Cauchy distribution with density

%X(x) =
1
π

a/n

(a/n)2 + (y − b/n)2

Stable distributions

The theory of Brownian motion relies on the central limit theorem. The theorem states
that the sum of n independent and identically distributed random variables

Sn =
n∑
i=1

Xi

obeys a Gaussian distribution in the limit n→∞, provided the first and second moments
of Xi are finite. These restrictions are so mild that many distributions belong to the
domain of attraction of the Gaussian.

However, an exception is the Cauchy distribution

%(x) =
1
π

1
a2 + x2

(3.42)

whose second moment is infinite. The Cauchy distribution occurs in many physical situa-
tions, in the Ornstein-Zernike theory of critical opalescence and in the lifetime broadening
of spectral lines, for instance. Therefore the question arise of whether it could also emerge
as a limiting distribution for Sn, and what the limiting distribution would look like if the
random variables were distributed according to (3.42).

The Cauchy distribution is just one example of a whole class of distributions which
posess long, inverse-power-law tails

%(x) ' 1
|x|1+α

, 0 < α < 2, |x| → ∞

These broad tails preclude the convergence to the Gaussian for n → ∞, but not the
existence of a limiting distribution.

The form and properties of these more general limiting distributions were worked out
in the 1930’s by P. Lévy, A. Khintchine and others. They are today called Lévy or stable
distributions.

Consider a set of random variables {Xk}nk=1 which are independent and identically
distributed according to

Pr {x < Xk < x+ dx} = %(x)dx, k = 1, . . . , n

Then one can ask the following questions:
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i) Is it possible to find real constants an and bn so that the distribution of the normalized
sum

Sn =
1
bn

n∑
k=1

Xk − an (3.43)

converges to a limiting distribution if n tends to infinity, i.e.

Pr {x < Sn < x+ dx} →
n→∞ L(x)dx

ii) What are the forms and the properties of all possible limiting distributions?

iii) When does the probability density %(x) belong to the domain of attraction of a specific
L(x)?

The answer to these questions requires the definition of a stable distribution.

Definition 3.3 A probability density is called stable if it is invariant under convolution,
i.e. if there are constants a and b such that

%(ax+ b) =
∫ ∞
−∞

dy %(a1(x− y) + b2)%(a2y + b2) (3.44)

for all real constants a1 > 0, b1, a2 > 0, b2.

If the probability distribution for the variable X is %X(x) then Y = aX + b has the
density

%Y (y)dy = Pr {y < Y < y + dy} = Pr {y < aX + b < y + dy}

= Pr {(y − b)/a < X < (y − b)/a+ dy/a} = %X

(
y − b
a

)
dy
a

i.e.

%Y (y) =
1
a
%X

(
y − b
a

)
For the characterictic function we have

fY (k) =
∫ ∞
−∞

dy eiky%y(y) =
1
a

∫ ∞
−∞

dy eiky%X

(
y − b
a

)
=
∫ ∞
−∞

dueik(au+b)%X(u) = eikbfX(ka)

Therefore the convolution in (3.44) implies

eikbfX(ka) = eikb1fX(ka1)eikb2fX(ka2)

Example 3.9 Gaussian distribution. A Gaussian distribution satisfies this relation
and is therefore stable. Since for a Gaussian variable

fX(k) = eikµ−k2σ2/2

we have
eikbeikaµ−(ka)2σ2/2 = eikb1eika1µ−(ka1)2σ2/2eikb2eika2µ−(ka2)2σ2/2
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The constants a and b must therefore be determined such that

b+ aµ = b1 + a1µ+ b2 + a2µ

a2 = a2
1 + a2

2

so that

a =
√
a2

1 + a2
2

b = b1 + b2 + µ(a1 + a2 −
√
a2

1 + a2
2)

Similarly one can show that the Cauchy distribution is stable, i.e. the convolution of
two Cauchy densities is again a Cauchy density. The general case solved by Lévy and
Khnitchin is summarized in the following theorem:

Theorem 3.2 (Canonical representation.) A probability density Lα,β(x) is stable iff
the logarithn of its characteristic function

Lα,β(k) = 〈eikX〉 =
∫ ∞
−∞

dx eikxLα,β(x)

reads

lnLα,β(k) = iγk − c|k|α
(

1 + iβ
k

|k|
ω(k, α)

)
where γ, c, α and β are real constants taking the values: γ arbitrary, c ≥ 0

0 < α < 2, −1 ≤ β ≤ 1

and the function ω(k, α) is given by

ω(k, α)∅
{

tan
(
πα
2

)
α 6= 1

2
π ln |k| α = 1

The constants γ and c are scale factors. Replacing x − γ with c1/αx shifts the origin
and rescales the abscissa, but does not alter the function Lα,β (unless α = 1, β 6= 0). In
contrast α and β define the shape and the properties of Lα,β(x).

The parameter α characterizes the large x behaviour of Lα,β and determines which
moments exist:

i) 0 < α < 2: Each stable distribution behaves as

Lα,β(x) ' 1
|x|1+α

, x→ ±∞

and
〈|x|δ〉 =

∫ ∞
−∞

dx |x|δLα,β(x) <∞, if 0 < δ < α

In particular, the latter property implies that the variance does not exist if α < 2
and that both mean value and variance do not exist if α < 1.
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ii) α = 2: Lα,β(x) is independent of β since ω(k, 2) = 0, and L is therefore Gaussian.

iii) β = 0: Lα,β(x) is an even function of x.

iv) β = ±1: Lα,β(x) exhibits a pronounced asymmetry for some choices of α. For instance
if 0 < α < 1 its support lies in the intervals (−∞, γ] for β = 1 and [γ,∞) for β = −1.

The next theorem answers the question which probability densities %(x) has a Lα,β as
limit distribution.

Theorem 3.3 The probability density %(x) belongs to the domain of attraction of a stable
density Lα,β(x) with characteristic exponent α (0 < α < 2) if and only if

%(x) ' αaαc±
|x|1+α

, x→ ±∞ (3.45)

where c+ ≥ 0, c− ≥ 0 and a > 0 are constants.

These constants are directly related to the prefactor c and the asymmetry parameter
β by

c =

{
π(c++c−)

2αΓ(α) sin πα
2

α 6= 1
π
2 (c+ + c−) α = 1

β =

{
(c−−c+)
c++c−) α 6= 1
(c+−c−)
c++c−) α = 1

Furthermore if %(x) belongs to the domain of attraction of a stable distribution its absolute
moments of order δ exist for δ < α:

〈|x|δ〉 =
∫ ∞
−∞

dx|x|δ%(x) =
{
<∞ 0 ≤ δ < α
∞ δ > α

and the normalization constant in (3.43) which characterizes the typical scaling behaviour
of Sn is given by

bn = an1/α

so that

lim
n→∞

Pr

{
x <

1
an1/α

n∑
k=1

Xk − an < x+ dx

}
= Lα,β(x)dx

where a is the same constant as in (3.45) and

0 < α < 1 : an = 0
1 < α < 2 : anbn = n〈X〉
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Examples

Example 3.10 Waiting time distribution with long tail. For a random walker with a
distribution of jump lengths f(r) and waiting times between jumps ψ(t) the probability
density p(r, t) for being at position r at time t is given by (2.72) i.e.

p(q, z) =
1− ψ̂(z)

z

1

1− ψ̂(z)f(q)
(3.46)

When ψ(t) and f(r) both have finite mean values and variance this leads to the diffusion
result in the limit q → 0, z → 0.
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Figure 3.1: Plot of the real and imaginary parts of the Cole-Cole function.

Assume now that ψ(t) has a long tail

ψ(t) =
αA

Γ(1− α)
1

t1+α
, 0 < α < 1, t→∞

so that 〈t〉 = ∞. Such long waiting times may occure in complex systems with many low
lying metastable states. During relaxation towards equilibrium the system tries to find the
lowest minimum of the free energy. A particle can be trapped in a low lying state for a
long time until it eventually gets sufficient energy to jump over a barrier and finds another
metastable state and so on until equilibrium is reached.

For the Laplace transform

ψ̂(z) =
∫ ∞

0
dt e−ztψ(t)

there is now no expansion in a Taylor series with powers z, z2 etc. However

dψ̂(z)
dz

= −
∫ ∞

0
dt e−zttψ(t)
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Figure 3.2: The absorption curve of polyethylene adiphate for various temperatures. The
curves are superimposed on a master curve when scaled with the peak value.

The factor t multiplying ψ(t) implies that long times are dominating the integral and we
can approximate ψ with its behaviour for long times

dψ̂(z)
dz

≈ − αA

Γ(1− α)

∫ ∞
0

dt e−zt
1
tα

= − αA

Γ(1− α)
zα−1

∫ ∞
0

du e−uu−α = −αAzα−1

where we used the integral representation of the gamma-function

Γ(x) =
∫ ∞

0
du e−uux−1

Since ψ̂(0) = 1 we find
ψ̂(z) = 1−Azα + . . .

Introducing this into (3.46) gives

p(q, z) =
Azα−1

azαf(q) + (1− f(q))
(3.47)

The corresponding susceptibility or response function is

χ(q, z) = f−1(q)− zp(q, z) =
(1− f(q))/f(q)

Azaf(q) + (1− f(q)

and has a so called Cole-Cole form. Such spectra are often seen in experiments on complex
systems.

We can invert (3.47) in time if we write

p(q, z) =
1

zf(q)

{
1 +

1− f(q)
Azαf(q)

}−1

=
1

zf(q)

∞∑
n=0

(−1)n
[

1− f(q)
Azαf(q)

]n
But ∫ ∞

0
dte−zttnα =

1
z1+nα

∫ ∞
0

du e−uunα =
Γ(1 + nα)
z1+nα



3.9 Infinitely divisible and stable distributions 47

and so

p(q, t) =
1

f(q)

∞∑
n=0

(−1)n
[

1− f(q)
Af(q)

]n tnα

Γ(1 + nα)
=

1
f(q)

Mα

(
1− f(q)
Af(q)

tα
)

where Mα(t) is the Mittag-Leffler function

Mα(t) =
∞∑
n=0

(−1)n
tn

Γ(1 + nα)

Notice that
M1(t) = e−t.

Compared with an exponential the Mittag-Leffler function decays slower due to the factor
α < 1 in the gamma-function Γ(1 + nα). Another origin of slowing down is the fact that
time enters via tα.

In fig 3.1 we show the real and imaginary parts with z = iω of the Cole-Cole distri-
bution. A characteristic property of the imaginary part χ′′(ω) is the symmetris shape
when plotted versus logω. This distribution is abundant in many complex stystems. An
example is shown in figure 3.2 which show the imaginary part of the dielectric constant
for polyester (polyethylene adipate). The various curves for different temperatures scale
when plotted as function ε′′(ω)/ε′′max. This master curve can be described by a Cole-Cole
law.

The Cole-Cole law is used to interpret data in such diverse fields as physics, biology,
geophysics etc.

Figure 3.3: Distribution of eartquake magnitudes in the New Madrid zone in the southeast-
ern United States during the period 1974-1983. The points show the number of earthquakes
with magnitude larger than a given magnitude m. The straight line indicates a power law
distribution of earthquakes. From Johnston, A. C. and Nava, S. J. Geophys. Res. 90
6737 (1985).
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Figure 3.4: a) Monthly variations of cotton prices during a period of 30 months. b) The
curve shows the number of months where the relative variation exceeded a given fraction.
Note the smooth transition from small variations to large variations. The straight line
indicates a power low. Other commodities follow a similar pattern. From Mandelbrot, B.
J. Business Univ. Chicago 36 307 (1963).

Because of their composite nature, complex systems often exhibit distributions with
long tails. There are many examples from variuos areas: physics, chemistry, biology,
geoscience and social sciences. Some examples of distributions with long tails where the
first or second moments may not exist are shown below.

The number of earthquakes of a given magniytude follows a simple distribution func-
tion known as the Gutenberg-Richter law. It turns out that every time there are about
1000 earthquakes of say magnitude 4 on the Richter scale, there are 100 earthquakes of
magnitude 5, 10 of magnitude 6, and so on. This law is illustrated in fig. 3.3 which
show how many earthquakes there were of each magnitude in a region of the southeastern
United States known as the New Madrid earthquake zone durin ghte period 1974-1983.
The Gutenberg-Richter law manifest itself as a straight line in this plot.

In economics, an empirical pattern similar to the Gutenberg-Richter law holds. Man-
delbrot pointed out in 1966 that the probability of having small and large variations on
prices of stocks, cotton and other commodities follows a very simple pattern, namely the
Lévy distribution. Mandelbrot had collected data for the variation of cotton prices from
month to month over several years. He then counted how often the monthly variationwas
between 10 and 20 percent, how often the variation was between 5 and 10 per cent, and
so on, and plotted the results on a logarithmic plot (fig. 3.4). The distribution of price
changes follows approximately a straight line a power law. The price variations are “scale
free” with no typical size of the variations, just as earthquakes do not have a typical
characteristic size. Mandelbrot also studied several different commodities, and found that
they all followed a similar pattern.

In his book Human Behaviour and the Principle of Least Effort Zipf have made a
number of striking observations of some simple regularities in systems of human origin.
Figure 3.5 shows how many cities in the world around 1920 had more than a given number
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Figure 3.5: Ranking of cities around the year 1920. The curves shows the number of cities
in which the population exceeds a given size or, equivalently, the relative ranking of cities
versus their population. From Zipf, G. K. Human Behaviour and the Principle of least
Effort. Cambridge, Addison-Wesley, 1949.

of inhabitants. There were a couple of cities larger than 8 million, ten larger than 1 million,
and 100 larger than 200 000. The curve is roughly a straght line on a logarithmic plot.
Zipf made similar plots for many geographical areas and found the same behaviour.

Zipf also counte dhow often a given word was used in a piece of literature, such as
James Joye’s Ulysses or a collection of American newspapers. The tnth most frequently
used word (the word of rank 10) appeared 2653 times. The twnetieth most used word
appeared 1311 times. The 20000th most frequent word was used only once. Figure 3.6
shows the frequency of words used in the English language versus their ranking. The word
of rank 1, the, is used with a frequencey of 9 percent. The word of rank 10 ,I, has the
frequency of 1 percent, the word of rank 100, say, is used with a frequency of 0.1 percent,
and so on. Again a remarkable staright line emerges. It does not matter whether the data
are taken from newspapers, the Bible or Ulysses - the curve is the same. The regularity
expressed by the straight lines in the logarithmic plot of rank versus frequancy with slope
near unity is referred to as Zopf’s law.
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Figure 3.6: Ranking of words in the English language. The curve shows how many words
appear with more than a given frequency. From Zipf, G. K. Human Behaviour and the
Principle of least Effort. Cambridge, Addison-Wesley, 1949.


